Using the bayesmeta R package for Bayesian random-effects meta-regression

被引:8
|
作者
Roever, Christian [1 ]
Friede, Tim [1 ]
机构
[1] Univ Med Ctr Gottingen, Dept Med Stat, Humboldtallee 32, D-37073 Gottingen, Germany
关键词
Meta; -analysis; Subgroup analysis; Covariables; Moderators; Heterogeneity; RANDOM-EFFECTS METAANALYSIS; NETWORK METAANALYSIS; MODEL; HETEROGENEITY; TRIALS; FRAMEWORK; DESIGN; BIAS;
D O I
10.1016/j.cmpb.2022.107303
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Background: Random-effects meta-analysis within a hierarchical normal modeling framework is com-monly implemented in a wide range of evidence synthesis applications. More general problems may even be tackled when considering meta-regression approaches that in addition allow for the inclusion of study -level covariables.Methods: We describe the Bayesian meta-regression implementation provided in the bayesmeta R pack-age including the choice of priors, and we illustrate its practical use.Results: A wide range of example applications are given, such as binary and continuous covariables, sub-group analysis, indirect comparisons, and model selection. Example R code is provided.Conclusions: The bayesmeta package provides a flexible implementation. Due to the avoidance of MCMC methods, computations are fast and reproducible, facilitating quick sensitivity checks or large-scale sim-ulation studies.(c) 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Bayesian Random-Effects Meta-Analysis Using the bayesmeta R Package
    Roever, Christian
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2020, 93 (06): : 1 - 51
  • [2] Multivariate random-effects meta-regression: Updates to mvmeta
    White, Ian R.
    [J]. STATA JOURNAL, 2011, 11 (02): : 255 - 270
  • [3] MetaDiff: differential isoform expression analysis using random-effects meta-regression
    Cheng Jia
    Weihua Guan
    Amy Yang
    Rui Xiao
    W. H. Wilson Tang
    Christine S. Moravec
    Kenneth B. Margulies
    Thomas P. Cappola
    Chun Li
    Mingyao Li
    [J]. BMC Bioinformatics, 16
  • [4] MetaDiff: differential isoform expression analysis using random-effects meta-regression
    Jia, Cheng
    Guan, Weihua
    Yang, Amy
    Xiao, Rui
    Tang, W. H. Wilson
    Moravec, Christine S.
    Margulies, Kenneth B.
    Cappola, Thomas P.
    Li, Mingyao
    Li, Chun
    [J]. BMC BIOINFORMATICS, 2015, 16
  • [5] Median bias reduction in random-effects meta-analysis and meta-regression
    Kyriakou, Sophia
    Kosmidis, Ioannis
    Sartori, Nicola
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2019, 28 (06) : 1622 - 1636
  • [6] On Estimating Residual Heterogeneity in Random-Effects Meta-Regression: A Comparative Study
    Panityakul, Thammarat
    Bumrungsup, Chinnaphong
    Knapp, Guido
    [J]. JOURNAL OF STATISTICAL THEORY AND APPLICATIONS, 2013, 12 (03): : 253 - 265
  • [7] On Estimating Residual Heterogeneity in Random-Effects Meta-Regression: A Comparative Study
    Thammarat Panityakul
    Chinnaphong Bumrungsup
    Guido Knapp
    [J]. Journal of Statistical Theory and Applications, 2013, 12 (3): : 253 - 265
  • [8] Birth weight and perfluorooctane sulfonic acid: a random-effects meta-regression analysis
    Dzierlenga, Michael W.
    Crawford, Lori
    Longnecker, Matthew P.
    [J]. ENVIRONMENTAL EPIDEMIOLOGY, 2020, 4 (03)
  • [9] Fixed-effect versus random-effects model in meta-regression analysis
    Spineli, Loukia M.
    Pandis, Nikolaos
    [J]. AMERICAN JOURNAL OF ORTHODONTICS AND DENTOFACIAL ORTHOPEDICS, 2020, 158 (05) : 770 - 772
  • [10] Bayesian meta-regression model using heavy-tailed random-effects with missing sample sizes for self-thinning meta-data
    Ma, Zhihua
    Chen, Ming-Hui
    Tang, Yi
    [J]. STATISTICS AND ITS INTERFACE, 2020, 13 (04) : 437 - 447