Median bias reduction in random-effects meta-analysis and meta-regression

被引:5
|
作者
Kyriakou, Sophia [1 ]
Kosmidis, Ioannis [2 ,3 ]
Sartori, Nicola [4 ]
机构
[1] UCL, Dept Stat Sci, 1-19 Torrington Pl, London WC1E 7HB, England
[2] Univ Warwick, Dept Stat, Coventry, W Midlands, England
[3] Alan Turing Inst, London, England
[4] Univ Padua, Dept Stat Sci, Padua, Italy
基金
英国工程与自然科学研究理事会;
关键词
Adjusted score equations; heterogeneity; mean bias reduction; penalised likelihood; random effects; LIKELIHOOD; INFERENCE;
D O I
10.1177/0962280218771717
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
The reduction of the mean or median bias of the maximum likelihood estimator in regular parametric models can be achieved through the additive adjustment of the score equations. In this paper, we derive the adjusted score equations for median bias reduction in random-effects meta-analysis and meta-regression models and derive efficient estimation algorithms. The median bias-reducing adjusted score functions are found to be the derivatives of a penalised likelihood. The penalised likelihood is used to form a penalised likelihood ratio statistic which has known limiting distribution and can be used for carrying out hypothesis tests or for constructing confidence intervals for either the fixed-effect parameters or the variance component. Simulation studies and real data applications are used to assess the performance of estimation and inference based on the median bias-reducing penalised likelihood and compare it to recently proposed alternatives. The results provide evidence on the effectiveness of median bias reduction in improving estimation and likelihood-based inference.
引用
收藏
页码:1622 / 1636
页数:15
相关论文
共 50 条
  • [1] Multivariate random-effects meta-regression: Updates to mvmeta
    White, Ian R.
    [J]. STATA JOURNAL, 2011, 11 (02): : 255 - 270
  • [2] On random-effects meta-analysis
    Zeng, D.
    Lin, D. Y.
    [J]. BIOMETRIKA, 2015, 102 (02) : 281 - 294
  • [3] MetaDiff: differential isoform expression analysis using random-effects meta-regression
    Cheng Jia
    Weihua Guan
    Amy Yang
    Rui Xiao
    W. H. Wilson Tang
    Christine S. Moravec
    Kenneth B. Margulies
    Thomas P. Cappola
    Chun Li
    Mingyao Li
    [J]. BMC Bioinformatics, 16
  • [4] Birth weight and perfluorooctane sulfonic acid: a random-effects meta-regression analysis
    Dzierlenga, Michael W.
    Crawford, Lori
    Longnecker, Matthew P.
    [J]. ENVIRONMENTAL EPIDEMIOLOGY, 2020, 4 (03)
  • [5] Fixed-effect versus random-effects model in meta-regression analysis
    Spineli, Loukia M.
    Pandis, Nikolaos
    [J]. AMERICAN JOURNAL OF ORTHODONTICS AND DENTOFACIAL ORTHOPEDICS, 2020, 158 (05) : 770 - 772
  • [6] MetaDiff: differential isoform expression analysis using random-effects meta-regression
    Jia, Cheng
    Guan, Weihua
    Yang, Amy
    Xiao, Rui
    Tang, W. H. Wilson
    Moravec, Christine S.
    Margulies, Kenneth B.
    Cappola, Thomas P.
    Li, Mingyao
    Li, Chun
    [J]. BMC BIOINFORMATICS, 2015, 16
  • [7] metaan: Random-effects meta-analysis
    Kontopantelis, Evangelos
    Reeves, David
    [J]. STATA JOURNAL, 2010, 10 (03): : 395 - 407
  • [8] Multivariate random-effects meta-analysis
    White, Ian R.
    [J]. STATA JOURNAL, 2009, 9 (01): : 40 - 56
  • [9] Meta-analysis: Random-effects model
    Spineli, Loukia M.
    Pandis, Nikolaos
    [J]. AMERICAN JOURNAL OF ORTHODONTICS AND DENTOFACIAL ORTHOPEDICS, 2020, 157 (02) : 280 - 282
  • [10] On Estimating Residual Heterogeneity in Random-Effects Meta-Regression: A Comparative Study
    Panityakul, Thammarat
    Bumrungsup, Chinnaphong
    Knapp, Guido
    [J]. JOURNAL OF STATISTICAL THEORY AND APPLICATIONS, 2013, 12 (03): : 253 - 265