An effective analytical method for fractional Brusselator reaction-diffusion system

被引:11
|
作者
Nisar, Kottakkaran Sooppy [1 ,5 ]
Jagatheeshwari, R. [2 ]
Ravichandran, C. [3 ]
Veeresha, P. [4 ]
机构
[1] Prince Sattam Bin Abdulaziz Univ, Coll Sci & Humanities Alkharj, Dept Math, Alkharj, Saudi Arabia
[2] Kumaraguru Coll Liberal Arts & Sci, Dept Math, Coimbatore, Tamil Nadu, India
[3] Kongunadu Arts & Sci Coll, Dept Math, Coimbatore, Tamilnadu, India
[4] CHRIST Deemed Univ, Ctr Math Needs, Dept Math, Bengaluru, India
[5] Prince Sattam Bin Abdulaziz Univ, Coll Sci & Humanities Alkharj, Dept Math, Alkharj 11942, Saudi Arabia
关键词
applied mathematics; fractional derivative and integrals; reaction-diffusion equation; residual power series method; EQUATIONS; MODEL;
D O I
10.1002/mma.9589
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In recent years, reaction-diffusion models have attracted researchers for their wide applications. In this article, we consider Brusselator reaction-diffusion system (BRDS), which is known for its cross diffusion and pattern formations in biology and chemistry. We derive an analytical solution of the fractional Brusselator reaction-diffusion system (FBRDS) with the help of the initial condition by a novel method, residual power series method (RPSM). The system solution has been analyzed by graph.
引用
收藏
页码:18749 / 18758
页数:10
相关论文
共 50 条
  • [31] TURING PATTERNS IN GENERAL REACTION-DIFFUSION SYSTEMS OF BRUSSELATOR TYPE
    Ghergu, Marius
    Radulescu, Vicentiu
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2010, 12 (04) : 661 - 679
  • [32] Chaotic and spatiotemporal oscillations in fractional reaction-diffusion system
    Owolabi, Kolade M.
    Karaagac, Berat
    CHAOS SOLITONS & FRACTALS, 2020, 141
  • [33] Fractional reaction-diffusion equation
    Seki, K
    Wojcik, M
    Tachiya, M
    JOURNAL OF CHEMICAL PHYSICS, 2003, 119 (04): : 2165 - 2170
  • [34] On a fractional reaction-diffusion equation
    de Andrade, Bruno
    Viana, Arlucio
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (03):
  • [36] A computational modeling of two dimensional reaction-diffusion Brusselator system arising in chemical processes
    Jiwari, Ram
    Yuan, Jinyun
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2014, 52 (06) : 1535 - 1551
  • [37] REACTION-DIFFUSION SYSTEM WITH BRUSSELATOR KINETICS - CONTROL OF A QUASI-PERIODIC ROUTE TO CHAOS
    CHAKRAVARTI, S
    MAREK, M
    RAY, WH
    PHYSICAL REVIEW E, 1995, 52 (03) : 2407 - 2423
  • [38] Fractional reaction-diffusion equations
    Saxena, R. K.
    Mathai, A. M.
    Haubold, H. J.
    ASTROPHYSICS AND SPACE SCIENCE, 2006, 305 (03) : 289 - 296
  • [39] Fractional Reaction-Diffusion Equations
    R. K. Saxena
    A. M. Mathai
    H. J. Haubold
    Astrophysics and Space Science, 2006, 305 : 289 - 296
  • [40] The boundary knot method for the solution of two-dimensional advection reaction-diffusion and Brusselator equations
    Dehghan, Mehdi
    Mohammadi, Vahid
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2021, 31 (01) : 106 - 133