On a fractional reaction-diffusion equation

被引:28
|
作者
de Andrade, Bruno [1 ]
Viana, Arlucio [2 ]
机构
[1] Univ Fed Sergipe, Dept Matemat, Ave Marechal Rodon, Sao Cristovao, SE, Brazil
[2] Univ Fed Sergipe, Dept Matemat, Ave Vereador Olimpio Grande, Itabaiana, SE, Brazil
来源
关键词
Integrodifferential equation; Self-similar solutions; Spatial decay; Fractional reaction-diffusion equation; HEAT-CONDUCTION; ASYMPTOTIC-BEHAVIOR; EXPONENTIAL DECAY; UNIQUENESS; EXISTENCE; MEMORY; CONTROLLABILITY; KERNEL;
D O I
10.1007/s00033-017-0801-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to study the global well-posedness and spatiotemporal asymptotic behavior of solutions for a fractional reaction-diffusion equation.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Fractional reaction-diffusion equation
    Seki, K
    Wojcik, M
    Tachiya, M
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2003, 119 (04): : 2165 - 2170
  • [2] Ergodicity of the stochastic fractional reaction-diffusion equation
    Guo, Boling
    Zhou, Guoli
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 109 : 1 - 22
  • [3] A local theory for a fractional reaction-diffusion equation
    Viana, Arlucio
    [J]. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2019, 21 (06)
  • [4] Dynamics of a Stochastic Fractional Reaction-Diffusion Equation
    Liu, Linfang
    Fu, Xianlong
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2018, 22 (01): : 95 - 124
  • [5] Solving the Caputo Fractional Reaction-Diffusion Equation on GPU
    Liu, Jie
    Gong, Chunye
    Bao, Weimin
    Tang, Guojian
    Jiang, Yuewen
    [J]. DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2014, 2014
  • [6] The Decay of mass for a nonlinear fractional reaction-diffusion equation
    Jleli, Mohamed
    Samet, Bessem
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (07) : 1369 - 1378
  • [7] On a semilinear fractional reaction-diffusion equation with nonlocal conditions
    Tran Ngoc Thach
    Kumar, Devendra
    Nguyen Hoang Luc
    Nguyen Duc Phuong
    [J]. ALEXANDRIA ENGINEERING JOURNAL, 2021, 60 (06) : 5511 - 5520
  • [8] An approximate solution of nonlinear fractional reaction-diffusion equation
    Das, S.
    Gupta, P. K.
    Ghosh, P.
    [J]. APPLIED MATHEMATICAL MODELLING, 2011, 35 (08) : 4071 - 4076
  • [9] Regularity theory for a nonlinear fractional reaction-diffusion equation
    de Andrade, Bruno
    Cruz, Thamires Santos
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 195
  • [10] On an inverse potential problem for a fractional reaction-diffusion equation
    Kaltenbacher, Barbara
    Rundell, William
    [J]. INVERSE PROBLEMS, 2019, 35 (06)