On a fractional reaction-diffusion equation

被引:28
|
作者
de Andrade, Bruno [1 ]
Viana, Arlucio [2 ]
机构
[1] Univ Fed Sergipe, Dept Matemat, Ave Marechal Rodon, Sao Cristovao, SE, Brazil
[2] Univ Fed Sergipe, Dept Matemat, Ave Vereador Olimpio Grande, Itabaiana, SE, Brazil
来源
关键词
Integrodifferential equation; Self-similar solutions; Spatial decay; Fractional reaction-diffusion equation; HEAT-CONDUCTION; ASYMPTOTIC-BEHAVIOR; EXPONENTIAL DECAY; UNIQUENESS; EXISTENCE; MEMORY; CONTROLLABILITY; KERNEL;
D O I
10.1007/s00033-017-0801-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to study the global well-posedness and spatiotemporal asymptotic behavior of solutions for a fractional reaction-diffusion equation.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Novel Evaluation of Fuzzy Fractional Cauchy Reaction-Diffusion Equation
    Shah, Nehad Ali
    El-Zahar, Essam R.
    Dutt, Hina M.
    Arefin, Mohammad Asif
    JOURNAL OF FUNCTION SPACES, 2022, 2022
  • [22] Propagation in a Fractional Reaction-Diffusion Equation in a Periodically Hostile Environment
    Leculier, Alexis
    Mirrahimi, Sepideh
    Roquejoffre, Jean-Michel
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2021, 33 (02) : 863 - 890
  • [23] On the Limit of Solutions for a Reaction-Diffusion Equation Containing Fractional Laplacians
    Xu, Jiaohui
    Caraballo, Tomas
    Valero, Jose
    APPLIED MATHEMATICS AND OPTIMIZATION, 2024, 89 (01):
  • [24] Numerical approximations for the nonlinear time fractional reaction-diffusion equation
    Liu, Haiyu
    Lu, Shujuan
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2023, 39 (02) : 1355 - 1375
  • [25] Barycentric rational collocation method for fractional reaction-diffusion equation
    Li, Jin
    AIMS MATHEMATICS, 2023, 8 (04): : 9009 - 9026
  • [26] Fractional reaction-diffusion equations
    Saxena, R. K.
    Mathai, A. M.
    Haubold, H. J.
    ASTROPHYSICS AND SPACE SCIENCE, 2006, 305 (03) : 289 - 296
  • [27] Fractional Reaction-Diffusion Equations
    R. K. Saxena
    A. M. Mathai
    H. J. Haubold
    Astrophysics and Space Science, 2006, 305 : 289 - 296
  • [28] A Numerical Method for Time-Fractional Reaction-Diffusion and Integro Reaction-Diffusion Equation Based on Quasi-Wavelet
    Kumar, Sachin
    Cao, Jinde
    Li, Xiaodi
    COMPLEXITY, 2020, 2020
  • [29] Continuity of the Unbounded Attractors for a Fractional Perturbation of a Scalar Reaction-Diffusion Equation
    Belluzi, Maykel
    Bortolan, Matheus C.
    Castro, Ubirajara
    Fernandes, Juliana
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2024,
  • [30] Numerical solution of the time fractional reaction-diffusion equation with a moving boundary
    Zheng, Minling
    Liu, Fawang
    Liu, Qingxia
    Burrage, Kevin
    Simpson, Matthew J.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 338 : 493 - 510