An approximate solution of nonlinear fractional reaction-diffusion equation

被引:29
|
作者
Das, S. [1 ]
Gupta, P. K. [1 ]
Ghosh, P. [2 ]
机构
[1] Banaras Hindu Univ, Inst Technol, Dept Appl Math, Varanasi 221005, Uttar Pradesh, India
[2] Banaras Hindu Univ, Inst Technol, Dept Mech Engn, Varanasi 221005, Uttar Pradesh, India
关键词
Reaction-diffusion equation; Non-linear differential equation; Fractional Brownian motion; Caputo derivative; Homotopy perturbation method; HOMOTOPY PERTURBATION METHOD; TRAVELING WAVES; BEHAVIOR;
D O I
10.1016/j.apm.2011.02.004
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The article presents a mathematical model of nonlinear reaction diffusion equation with fractional time derivative alpha (0 < alpha <= 1) in the form of a rapidly convergent series with easily computable components. Fractional reaction diffusion equation is used for modeling of merging travel solutions in nonlinear system for popular dynamics. The fractional derivatives are described in the Caputo sense. The anomalous behaviors of the nonlinear problems in the form of sub- and super-diffusion due to the presence of reaction term are shown graphically for different particular cases. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:4071 / 4076
页数:6
相关论文
共 50 条
  • [1] NUMERICAL SOLUTION OF A NONLINEAR REACTION-DIFFUSION EQUATION
    唐世敏
    秦素娣
    R.O.Weber
    [J]. Applied Mathematics and Mechanics(English Edition), 1991, (08) : 751 - 758
  • [2] The Decay of mass for a nonlinear fractional reaction-diffusion equation
    Jleli, Mohamed
    Samet, Bessem
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (07) : 1369 - 1378
  • [3] Regularity theory for a nonlinear fractional reaction-diffusion equation
    de Andrade, Bruno
    Cruz, Thamires Santos
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 195
  • [4] Fractional reaction-diffusion equation
    Seki, K
    Wojcik, M
    Tachiya, M
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2003, 119 (04): : 2165 - 2170
  • [5] On a fractional reaction-diffusion equation
    de Andrade, Bruno
    Viana, Arlucio
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (03):
  • [6] An analytic study on the approximate solution of a nonlinear time-fractional Cauchy reaction-diffusion equation with the Mittag-Leffler law
    Hosseini, Kamyar
    Ilie, Mousa
    Mirzazadeh, Mohammad
    Baleanu, Dumitru
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (08) : 6247 - 6258
  • [7] A NUMERICAL METHOD TO THE SOLUTION OF NONLINEAR REACTION-DIFFUSION EQUATION
    Chocholaty, Pavol
    [J]. APLIMAT 2005 - 4TH INTERNATIONAL CONFERENCE, PT II, 2005, : 63 - 66
  • [8] UNSTABILITY OF THE STEADY SOLUTION OF A NONLINEAR REACTION-DIFFUSION EQUATION
    CORTAZAR, C
    ELGUETA, M
    [J]. HOUSTON JOURNAL OF MATHEMATICS, 1991, 17 (02): : 149 - 155
  • [9] Numerical approximations for the nonlinear time fractional reaction-diffusion equation
    Liu, Haiyu
    Lu, Shujuan
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2023, 39 (02) : 1355 - 1375
  • [10] An efficient parallel solution for Caputo fractional reaction-diffusion equation
    Gong, Chunye
    Bao, Weimin
    Tang, Guojian
    Yang, Bo
    Liu, Jie
    [J]. JOURNAL OF SUPERCOMPUTING, 2014, 68 (03): : 1521 - 1537