An approximate solution of nonlinear fractional reaction-diffusion equation

被引:29
|
作者
Das, S. [1 ]
Gupta, P. K. [1 ]
Ghosh, P. [2 ]
机构
[1] Banaras Hindu Univ, Inst Technol, Dept Appl Math, Varanasi 221005, Uttar Pradesh, India
[2] Banaras Hindu Univ, Inst Technol, Dept Mech Engn, Varanasi 221005, Uttar Pradesh, India
关键词
Reaction-diffusion equation; Non-linear differential equation; Fractional Brownian motion; Caputo derivative; Homotopy perturbation method; HOMOTOPY PERTURBATION METHOD; TRAVELING WAVES; BEHAVIOR;
D O I
10.1016/j.apm.2011.02.004
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The article presents a mathematical model of nonlinear reaction diffusion equation with fractional time derivative alpha (0 < alpha <= 1) in the form of a rapidly convergent series with easily computable components. Fractional reaction diffusion equation is used for modeling of merging travel solutions in nonlinear system for popular dynamics. The fractional derivatives are described in the Caputo sense. The anomalous behaviors of the nonlinear problems in the form of sub- and super-diffusion due to the presence of reaction term are shown graphically for different particular cases. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:4071 / 4076
页数:6
相关论文
共 50 条
  • [21] Solution of Generalized Fractional Reaction-Diffusion Equations
    R. K. Saxena
    A. M. Mathai
    H. J. Haubold
    [J]. Astrophysics and Space Science, 2006, 305 (3)
  • [22] A NEW APPROXIMATE SOLUTION OF NONLINEAR DIFFUSION EQUATION
    袁镒吾
    [J]. Applied Mathematics and Mechanics(English Edition), 1985, (07) : 701 - 706
  • [23] APPROXIMATE SOLUTION TO GENERIC INITIAL VALUE-PROBLEM FOR NONLINEAR REACTION-DIFFUSION EQUATIONS
    ROSEN, G
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 1974, 26 (02) : 221 - 224
  • [24] Analytical Solutions for a Nonlinear Reaction-diffusion Equation
    Curilef, Sergio
    [J]. 11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013, PTS 1 AND 2 (ICNAAM 2013), 2013, 1558 : 1771 - 1774
  • [25] Quenching for a reaction-diffusion equation with nonlinear memory
    Zhou, Shouming
    Mu, Chunlai
    Du, Qingling
    Zeng, Rong
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (02) : 754 - 763
  • [26] On the identification of a nonlinear term in a reaction-diffusion equation
    Kaltenbacher, Barbara
    Rundell, William
    [J]. INVERSE PROBLEMS, 2019, 35 (11)
  • [27] Solution of nonlinear equations and computation of multiple solutions of a simple reaction-diffusion equation
    Swift, A
    Balakrishnan, E
    [J]. ANZIAM JOURNAL, 2000, 42 : 55 - 64
  • [28] NUMERICAL-SOLUTION OF THE REACTION-DIFFUSION EQUATION
    GUO, BY
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 1985, 3 (04) : 298 - 314
  • [29] NONSTANDARD FINITE DIFFERENCE METHOD FOR NONLINEAR RIESZ SPACE FRACTIONAL REACTION-DIFFUSION EQUATION
    Cai, Li
    Guo, Meifang
    Li, Yiqiang
    Ying, Wenjun
    Gao, Hao
    Luo, Xiaoyu
    [J]. INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2019, 16 (06) : 925 - 938
  • [30] Solving the Caputo Fractional Reaction-Diffusion Equation on GPU
    Liu, Jie
    Gong, Chunye
    Bao, Weimin
    Tang, Guojian
    Jiang, Yuewen
    [J]. DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2014, 2014