TURING PATTERNS IN GENERAL REACTION-DIFFUSION SYSTEMS OF BRUSSELATOR TYPE

被引:30
|
作者
Ghergu, Marius [1 ]
Radulescu, Vicentiu [2 ,3 ]
机构
[1] Natl Univ Ireland Univ Coll Dublin, Sch Math Sci, Dublin 4, Ireland
[2] Romanian Acad, Inst Math Simion Stoilow, RO-014700 Bucharest, Romania
[3] Univ Craiova, Dept Math, Craiova 200585, Romania
关键词
Turing patterns; reaction-diffusion system; Brusselator model; stability; steady-state solutions; MODEL; OSCILLATIONS; BIFURCATION; DYNAMICS;
D O I
10.1142/S0219199710003968
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the reaction-diffusion system { u(t) - d(1)Delta u = a - (b + 1) + f(u)v in Omega x (0, T), v(t) - d(2)Delta v = bu - f(u)v in Omega x (0, T), u(x, 0) = u(0)(x), v(x, 0) = v(0)(x) on Omega, partial derivative u/partial derivative v(x, t) = partial derivative u/partial derivative v(x, t) = 0 on partial derivative Omega x (0, T). Here Omega is a smooth and bounded domain in R-N (N >= 1), a, b, d(1), d(2) > 0 abd f is an element of C-1[0, infinity) is a non-decreasing function. The case f(u) = u(2) corresponds to the standard Brusselator model for autocatalytic oscillating chemical reactions. Our analysis points out the crucial role played by the nonlinearity f in the existence of Turing patterns. More precisely, we show that if f has a sublinear growth then no Turing patterns occur, while if f has a superlinear growth then existence of such patterns is strongly related to the inter-dependence between the parameters a, b and the diffusion coefficients d(1), d(2).
引用
收藏
页码:661 / 679
页数:19
相关论文
共 50 条
  • [1] Turing Instability of Brusselator in the Reaction-Diffusion Network
    Ji, Yansu
    Shen, Jianwei
    COMPLEXITY, 2020, 2020
  • [2] On the speed of propagation in Turing patterns for reaction-diffusion systems
    Klika, Vaclav
    Gaffney, Eamonn A.
    Maini, Philip K.
    PHYSICA D-NONLINEAR PHENOMENA, 2024, 467
  • [3] Turing Patterns in a Reaction-Diffusion System
    WU Yan-Ning WANG Ping-Jian HOU Chun-Ju LIU Chang-Song ZHU Zhen-Gang Key Laboratory of Material Physics
    CommunicationsinTheoreticalPhysics, 2006, 45 (04) : 761 - 764
  • [4] Turing patterns in a reaction-diffusion system
    Wu, YN
    Wang, PJ
    Hou, CJ
    Liu, CS
    Zhu, ZG
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2006, 45 (04) : 761 - 764
  • [5] Effect of randomness and anisotropy on Turing patterns in reaction-diffusion systems
    Bose, I
    Chaudhuri, I
    PHYSICAL REVIEW E, 1997, 55 (05) : 5291 - 5296
  • [6] TURING PATTERNS AND WAVEFRONTS FOR REACTION-DIFFUSION SYSTEMS IN AN INFINITE CHANNEL
    Chen, Chao-Nien
    Ei, Shin-Ichiro
    Lin, Ya-Ping
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2010, 70 (08) : 2822 - 2843
  • [7] Square Turing patterns in reaction-diffusion systems with coupled layers
    Li, Jing
    Wang, Hongli
    Ouyang, Qi
    CHAOS, 2014, 24 (02)
  • [8] Turing patterns in a reaction-diffusion epidemic model
    Jia, Yanfei
    Cai, Yongli
    Shi, Hongbo
    Fu, Shengmao
    Wang, Weiming
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2018, 11 (02)
  • [9] ANALYSIS OF STOCHASTIC SENSITIVITY OF TURING PATTERNS IN DISTRIBUTED REACTION-DIFFUSION SYSTEMS
    Kolinichenko, A. P.
    Ryashko, L. B.
    IZVESTIYA INSTITUTA MATEMATIKI I INFORMATIKI-UDMURTSKOGO GOSUDARSTVENNOGO UNIVERSITETA, 2020, 55 : 155 - 163
  • [10] Finite propagation enhances Turing patterns in reaction-diffusion networked systems
    Carletti, Timoteo
    Muolo, Riccardo
    JOURNAL OF PHYSICS-COMPLEXITY, 2021, 2 (04):