Quasilinear PDEs, Interpolation Spaces and Holderian mappings

被引:0
|
作者
Ahmed, I. [1 ]
Fiorenza, A. [2 ,3 ]
Formica, M. R. [4 ]
Gogatishvili, A. [5 ]
El Hamidi, A. [6 ,7 ]
Rakotoson, J. M. [8 ]
机构
[1] Sukkur IBA Univ, Dept Math, Sukkur, Pakistan
[2] Univ Napoli Federico II, Via Monteoliveto 3, I-80134 Naples, Italy
[3] CNR, Ist Applicaz Calcolo Mauro Picone, Via Pietro Castellino 111, I-80131 Naples, Italy
[4] Univ Napoli Parthenope, Via Generale Parisi 13, I-80132 Naples, Italy
[5] Czech Acad Sci, Inst Math, Prague 11567 1, Czech Republic
[6] Univ Rochelle, Dept Math, Ave Michel Crepeau 17042, La Rochelle, France
[7] Univ Rochelle, Lab LaSIE, Ave Michel Crepeau 17042, La Rochelle, France
[8] Univ Poitiers, Lab Math & Applicat, 11 Bd Marie & Pierre Curie,Teleport 2, F-86073 Poitiers 9, France
基金
美国国家科学基金会;
关键词
interpolation; Holderian operator; quasilinear equation; regularity; anisotropic-variable exponent; NONLINEAR ELLIPTIC-EQUATIONS; RENORMALIZED SOLUTIONS; REAL INTERPOLATION; SOBOLEV SPACES; T-SET; EXISTENCE; UNIQUENESS; GRADIENT; COMPACTNESS; THEOREMS;
D O I
10.1007/s10476-023-0245-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
As in the work of Tartar [59], we develop here some new results on nonlinear interpolation of alpha-Holderian mappings between normed spaces, by studying the action of the mappings on K-functionals and between interpolation spaces with logarithm functions. We apply these results to obtain some regularity results on the gradient of the solutions to quasilinear equations of the form - div((a) over cap(del u)) + V (u) = f, where V is a nonlinear potential and f belongs to non-standard spaces like Lorentz-Zygmund spaces. We show several results; for instance, that the mapping T : T f = del u is locally or globally alpha-H<spacing diaeresis>olderian under suitable values of a and appropriate hypotheses on V and (a) over cap.
引用
收藏
页码:895 / 950
页数:56
相关论文
共 50 条
  • [41] Krylov and Safonov estimates for degenerate quasilinear elliptic PDEs
    Delarue, Francois
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 248 (04) : 924 - 951
  • [42] Orlicz capacities and applications to PDEs and Sobolev mappings
    Fiorenza, A
    ELLIPTIC AND PARABOLIC PROBLEMS: A SPECIAL TRIBUTE TO THE WORK OF HAIM BREZIS, 2005, 63 : 259 - 266
  • [43] A system of PDES for Riemannian spaces
    Senarath, Padma
    Thornley, Gillian
    Van Brunt, Bruce
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2007, 82 : 249 - 262
  • [44] Soft quasilinear operators in soft normed quasilinear spaces
    Bulak, Fatma Onat
    Bozkurt, Hacer
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 45 (03) : 4847 - 4856
  • [45] ON ψ- INTERPOLATION SPACES
    Nikolova, Ludmila
    Zachariades, Theodossios
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2009, 12 (04): : 827 - 838
  • [46] INTERPOLATION OF SPACES
    SPARR, G
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1974, 278 (07): : 491 - 492
  • [47] Numerical approximation of PDEs and Clement's interpolation
    Rappaz, Jacques
    Partial Differential Equations and Functional Analysis: The Philippe Clement Festschrift, 2006, 168 : 237 - 250
  • [48] Hamiltonian Interpolation of Splitting Approximations for Nonlinear PDEs
    Faou, Erwan
    Grebert, Benoit
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2011, 11 (04) : 381 - 415
  • [49] Multiscale empirical interpolation for solving nonlinear PDEs
    Calo, Victor M.
    Efendiev, Yalchin
    Galvisd, Juan
    Ghommem, Mehdi
    JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 278 : 204 - 220
  • [50] Hamiltonian Interpolation of Splitting Approximations for Nonlinear PDEs
    Erwan Faou
    Benoît Grébert
    Foundations of Computational Mathematics, 2011, 11 : 381 - 415