Quasilinear PDEs, Interpolation Spaces and Holderian mappings

被引:0
|
作者
Ahmed, I. [1 ]
Fiorenza, A. [2 ,3 ]
Formica, M. R. [4 ]
Gogatishvili, A. [5 ]
El Hamidi, A. [6 ,7 ]
Rakotoson, J. M. [8 ]
机构
[1] Sukkur IBA Univ, Dept Math, Sukkur, Pakistan
[2] Univ Napoli Federico II, Via Monteoliveto 3, I-80134 Naples, Italy
[3] CNR, Ist Applicaz Calcolo Mauro Picone, Via Pietro Castellino 111, I-80131 Naples, Italy
[4] Univ Napoli Parthenope, Via Generale Parisi 13, I-80132 Naples, Italy
[5] Czech Acad Sci, Inst Math, Prague 11567 1, Czech Republic
[6] Univ Rochelle, Dept Math, Ave Michel Crepeau 17042, La Rochelle, France
[7] Univ Rochelle, Lab LaSIE, Ave Michel Crepeau 17042, La Rochelle, France
[8] Univ Poitiers, Lab Math & Applicat, 11 Bd Marie & Pierre Curie,Teleport 2, F-86073 Poitiers 9, France
基金
美国国家科学基金会;
关键词
interpolation; Holderian operator; quasilinear equation; regularity; anisotropic-variable exponent; NONLINEAR ELLIPTIC-EQUATIONS; RENORMALIZED SOLUTIONS; REAL INTERPOLATION; SOBOLEV SPACES; T-SET; EXISTENCE; UNIQUENESS; GRADIENT; COMPACTNESS; THEOREMS;
D O I
10.1007/s10476-023-0245-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
As in the work of Tartar [59], we develop here some new results on nonlinear interpolation of alpha-Holderian mappings between normed spaces, by studying the action of the mappings on K-functionals and between interpolation spaces with logarithm functions. We apply these results to obtain some regularity results on the gradient of the solutions to quasilinear equations of the form - div((a) over cap(del u)) + V (u) = f, where V is a nonlinear potential and f belongs to non-standard spaces like Lorentz-Zygmund spaces. We show several results; for instance, that the mapping T : T f = del u is locally or globally alpha-H<spacing diaeresis>olderian under suitable values of a and appropriate hypotheses on V and (a) over cap.
引用
收藏
页码:895 / 950
页数:56
相关论文
共 50 条
  • [31] Invertible mappings of nonlinear PDEs to linear PDEs through admitted conservation laws
    Anco, Stephen
    Bluman, George
    Wolf, Thomas
    ACTA APPLICANDAE MATHEMATICAE, 2008, 101 (1-3) : 21 - 38
  • [32] Invertible Mappings of Nonlinear PDEs to Linear PDEs through Admitted Conservation Laws
    Stephen Anco
    George Bluman
    Thomas Wolf
    Acta Applicandae Mathematicae, 2008, 101 : 21 - 38
  • [33] Mappings and spaces
    Semmes, S
    QUASICONFORMAL MAPPINGS AND ANALYSIS: A COLLECTION OF PAPERS HONORING F.W. GEHRING, 1998, : 347 - 368
  • [34] MAPPINGS AND SPACES
    ISIWATA, T
    PACIFIC JOURNAL OF MATHEMATICS, 1967, 20 (03) : 455 - &
  • [35] THE OBSTACLE PROBLEM FOR QUASILINEAR STOCHASTIC PDES: ANALYTICAL APPROACH
    Denis, Laurent
    Matoussi, Anis
    Zhang, Jing
    ANNALS OF PROBABILITY, 2014, 42 (03): : 865 - 905
  • [36] The obstacle problem for quasilinear stochastic PDEs with degenerate operator
    Yang, Xue
    Zhang, Jing
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2019, 129 (09) : 3055 - 3079
  • [37] Quasilinear Stochastic PDEs with two obstacles: Probabilistic approach
    Denis, Laurent
    Matoussi, Anis
    Zhang, Jing
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2021, 133 : 1 - 40
  • [38] CONTROLLABILITY UNDER POSITIVE CONSTRAINTS FOR QUASILINEAR PARABOLIC PDES
    Nunez-Chavez, Miguel R.
    MATHEMATICAL CONTROL AND RELATED FIELDS, 2021, : 327 - 341
  • [39] Auxiliary SDEs for homogenization of quasilinear PDEs with periodic coefficients
    Delarue, F
    ANNALS OF PROBABILITY, 2004, 32 (3B): : 2305 - 2361
  • [40] Compensation of actuator dynamics governed by quasilinear hyperbolic PDEs
    Bekiaris-Liberis, Nikolaos
    Krstic, Miroslav
    AUTOMATICA, 2018, 92 : 29 - 40