Orlicz capacities and applications to PDEs and Sobolev mappings

被引:0
|
作者
Fiorenza, A [1 ]
机构
[1] Univ Naples Federico II, Dipartimento Costruz & Metodi Matemat Architectur, I-80134 Naples, Italy
关键词
nonlinear elliptic equations; Orlicz spaces; measure data; capacity; capacitary estimate;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We discuss two applications of the notion of Orlicz capacity. The first one is related to a nonexistence result of solutions for some nonlinear elliptic equations having measure data, the second one to a capacitary estimate useful for proving an extension, due to Maly, Swanson and Ziemer ([20]), of the area and co-area formulas.
引用
收藏
页码:259 / 266
页数:8
相关论文
共 50 条
  • [1] Orlicz-Sobolev capacities and their null sets
    Jani Joensuu
    Revista Matemática Complutense, 2010, 23 : 217 - 232
  • [2] Orlicz-Sobolev capacities and their null sets
    Joensuu, Jani
    REVISTA MATEMATICA COMPLUTENSE, 2010, 23 (01): : 217 - 232
  • [3] ON NULL SETS OF SOBOLEV-ORLICZ CAPACITIES
    Joensuu, Jani
    ILLINOIS JOURNAL OF MATHEMATICS, 2008, 52 (04) : 1195 - 1211
  • [4] Orlicz capacities and applications to some existence questions for elliptic PDES having measure data
    Fiorenza, A
    Prignet, A
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2003, 9 : 317 - 341
  • [5] On mappings in the Orlicz–Sobolev classes on Riemannian manifolds
    Elena S. Afanasieva
    Vladimir I. Ryazanov
    Ruslan R. Salimov
    Journal of Mathematical Sciences, 2012, 181 (1) : 1 - 17
  • [6] On Orlicz capacities and a nonexistence result for certain elliptic PDEs
    Alberto Fiorenza
    Flavia Giannetti
    Nonlinear Differential Equations and Applications NoDEA, 2015, 22 : 1949 - 1958
  • [7] On Orlicz capacities and a nonexistence result for certain elliptic PDEs
    Fiorenza, Alberto
    Giannetti, Flavia
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2015, 22 (06): : 1949 - 1958
  • [8] On the behavior of Orlicz–Sobolev mappings with branching on the unit sphere
    Mateljevic M.
    Sevost’yanov E.
    Journal of Mathematical Sciences, 2023, 270 (3) : 467 - 499
  • [9] On the Orlicz–Sobolev Classes and Mappings with Bounded Dirichlet Integral
    V. I. Ryazanov
    R. R. Salimov
    E. A. Sevost’yanov
    Ukrainian Mathematical Journal, 2014, 65 : 1394 - 1405
  • [10] Estimates for certain Orlicz-Sobolev capacities of an Euclidean ball
    Joensuu, Jani
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (11) : 4316 - 4330