On the Orlicz–Sobolev Classes and Mappings with Bounded Dirichlet Integral

被引:0
|
作者
V. I. Ryazanov
R. R. Salimov
E. A. Sevost’yanov
机构
[1] Ukrainian National Academy of Sciences,Institute of Applied Mathematics and Mechanics
来源
关键词
Carnot Group; Sobolev Class; Total Differential; Coordinate Hyperplane; Ordinary Partial Derivative;
D O I
暂无
中图分类号
学科分类号
摘要
It is shown that homeomorphisms f in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {{\mathbb{R}}^n} $\end{document}, n ≥ 2, with finite Iwaniec distortion of the Orlicz–Sobolev classes W1,φloc under the Calderon condition on the function φ and, in particular, the Sobolev classes W1,φloc, p > n - 1, are differentiable almost everywhere and have the Luzin (N) -property on almost all hyperplanes. This enables us to prove that the corresponding inverse homeomorphisms belong to the class of mappings with bounded Dirichlet integral and establish the equicontinuity and normality of the families of inverse mappings.
引用
收藏
页码:1394 / 1405
页数:11
相关论文
共 50 条
  • [1] ON THE ORLICZ-SOBOLEV CLASSES AND MAPPINGS WITH BOUNDED DIRICHLET INTEGRAL
    Ryazanov, V. I.
    Salimov, R. R.
    Sevost'yanov, E. A.
    UKRAINIAN MATHEMATICAL JOURNAL, 2014, 65 (09) : 1394 - 1405
  • [2] On mappings in the Orlicz–Sobolev classes on Riemannian manifolds
    Elena S. Afanasieva
    Vladimir I. Ryazanov
    Ruslan R. Salimov
    Journal of Mathematical Sciences, 2012, 181 (1) : 1 - 17
  • [3] Mappings of a Bounded Dirichlet Integral: The Modulus Method
    Cristea, Mihai
    AXIOMS, 2025, 14 (01)
  • [4] Poletskiĭ Type Inequality for Mappings from the Orlicz-Sobolev Classes
    Anatoly Golberg
    Ruslan Salimov
    Evgeny Sevost’yanov
    Complex Analysis and Operator Theory, 2016, 10 : 881 - 901
  • [5] Poletskii Type Inequality for Mappings from the Orlicz-Sobolev Classes
    Golberg, Anatoly
    Salimov, Ruslan
    Sevost'yanov, Evgeny
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2016, 10 (05) : 881 - 901
  • [6] On the Local Behavior of Open Discrete Mappings from the Orlicz–Sobolev Classes
    E. A. Sevost’yanov
    Ukrainian Mathematical Journal, 2017, 68 : 1447 - 1465
  • [7] Bi-Sobolev mappings with differential matrices in Orlicz Zygmund classes
    Giannetti, Flavia
    di Napoli, Antonia Passarelli
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 369 (01) : 346 - 356
  • [8] ON THE LOCAL BEHAVIOR OF OPEN DISCRETE MAPPINGS FROM THE ORLICZ-SOBOLEV CLASSES
    Sevost'yanov, E. A.
    UKRAINIAN MATHEMATICAL JOURNAL, 2017, 68 (09) : 1447 - 1465
  • [9] Holder and Lipschitz Continuity in Orlicz-Sobolev Classes, Distortion and Harmonic Mappings
    Mateljevic, Miodrag
    Salimov, Ruslan
    Sevostyanov, Evgeny
    FILOMAT, 2022, 36 (16) : 5359 - 5390
  • [10] ON BOUNDARY BEHAVIOUR OF OPEN, CLOSED MAPPINGS OF BOUNDED DIRICHLET INTEGRAL
    Cristea, Mihai
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2024, 69 (3-4): : 461 - 470