On the Orlicz–Sobolev Classes and Mappings with Bounded Dirichlet Integral

被引:0
|
作者
V. I. Ryazanov
R. R. Salimov
E. A. Sevost’yanov
机构
[1] Ukrainian National Academy of Sciences,Institute of Applied Mathematics and Mechanics
来源
关键词
Carnot Group; Sobolev Class; Total Differential; Coordinate Hyperplane; Ordinary Partial Derivative;
D O I
暂无
中图分类号
学科分类号
摘要
It is shown that homeomorphisms f in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {{\mathbb{R}}^n} $\end{document}, n ≥ 2, with finite Iwaniec distortion of the Orlicz–Sobolev classes W1,φloc under the Calderon condition on the function φ and, in particular, the Sobolev classes W1,φloc, p > n - 1, are differentiable almost everywhere and have the Luzin (N) -property on almost all hyperplanes. This enables us to prove that the corresponding inverse homeomorphisms belong to the class of mappings with bounded Dirichlet integral and establish the equicontinuity and normality of the families of inverse mappings.
引用
收藏
页码:1394 / 1405
页数:11
相关论文
共 50 条