Orlicz capacities and applications to PDEs and Sobolev mappings

被引:0
|
作者
Fiorenza, A [1 ]
机构
[1] Univ Naples Federico II, Dipartimento Costruz & Metodi Matemat Architectur, I-80134 Naples, Italy
关键词
nonlinear elliptic equations; Orlicz spaces; measure data; capacity; capacitary estimate;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We discuss two applications of the notion of Orlicz capacity. The first one is related to a nonexistence result of solutions for some nonlinear elliptic equations having measure data, the second one to a capacitary estimate useful for proving an extension, due to Maly, Swanson and Ziemer ([20]), of the area and co-area formulas.
引用
收藏
页码:259 / 266
页数:8
相关论文
共 50 条
  • [41] Mathematical Analysis -Orlicz-Sobolev regularity of mappings with subexpo--nentially intergrable distortion
    Clop, Albert
    Koskela, Pekka
    Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, Rendiconti Lincei Matematica e Applicazioni, 2009, 20 (04): : 301 - 326
  • [42] Hardy–Littlewood–Sobolev Inequalities with the Fractional Poisson Kernel and Their Applications in PDEs
    Lu CHEN
    Guozhen LU
    Chunxia TAO
    ActaMathematicaSinica, 2019, 35 (06) : 853 - 875
  • [43] Mappings of Orlicz Type
    Bakery, Awad A.
    NEW TRENDS IN ANALYSIS AND INTERDISCIPLINARY APPLICATIONS, 2017, : 427 - 433
  • [44] Hardy–Littlewood–Sobolev Inequalities with the Fractional Poisson Kernel and Their Applications in PDEs
    Lu CHEN
    Guozhen LU
    Chunxia TAO
    Acta Mathematica Sinica,English Series, 2019, 35 (06) : 853 - 875
  • [45] Hardy—Littlewood—Sobolev Inequalities with the Fractional Poisson Kernel and Their Applications in PDEs
    Lu Chen
    Guozhen Lu
    Chunxia Tao
    Acta Mathematica Sinica, English Series, 2019, 35 : 853 - 875
  • [46] Orlicz-Sobolev Algebras
    Andrea Cianchi
    Potential Analysis, 2008, 28
  • [47] Normality of the Orlicz–Sobolev Classes
    V. I. Ryazanov
    R. R. Salimov
    E. A. Sevost’yanov
    Ukrainian Mathematical Journal, 2016, 68 : 115 - 126
  • [48] On fractional Orlicz–Sobolev spaces
    Angela Alberico
    Andrea Cianchi
    Luboš Pick
    Lenka Slavíková
    Analysis and Mathematical Physics, 2021, 11
  • [49] Orlicz-Sobolev algebras
    Cianchi, Andrea
    POTENTIAL ANALYSIS, 2008, 28 (04) : 379 - 388
  • [50] On F-Sobolev and Orlicz-Sobolev inequalities
    Cholryong Kang
    Fengyu Wang
    Frontiers of Mathematics in China, 2009, 4 : 659 - 667