Hamiltonian Interpolation of Splitting Approximations for Nonlinear PDEs

被引:0
|
作者
Erwan Faou
Benoît Grébert
机构
[1] INRIA & ENS Cachan Bretagne,Laboratoire de Mathématiques Jean Leray
[2] Université de Nantes,undefined
关键词
Hamiltonian interpolation; Backward error analysis; Splitting integrators; Nonlinear Schrödinger equation; Nonlinear wave equation; Long-time behavior; 65P10; 37M15;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a wide class of semilinear Hamiltonian partial differential equations and their approximation by time splitting methods. We assume that the nonlinearity is polynomial, and that the numerical trajectory remains at least uniformly integrable with respect to an eigenbasis of the linear operator (typically the Fourier basis). We show the existence of a modified interpolated Hamiltonian equation whose exact solution coincides with the discrete flow at each time step over a long time. While for standard splitting or implicit–explicit schemes, this long time depends on a cut-off condition in the high frequencies (CFL condition), we show that it can be made exponentially large with respect to the step size for a class of modified splitting schemes.
引用
收藏
页码:381 / 415
页数:34
相关论文
共 50 条
  • [1] Hamiltonian Interpolation of Splitting Approximations for Nonlinear PDEs
    Faou, Erwan
    Grebert, Benoit
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2011, 11 (04) : 381 - 415
  • [2] Lectures on Hamiltonian methods in nonlinear PDEs
    Kuksin, Sergei
    HAMILTONIAN DYNAMICS THEORY AND APPLICATIONS, 2005, 1861 : 143 - 164
  • [3] Nonlinear oscillations of Hamiltonian PDEs, vol 74
    Precup, Radu
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2008, 53 (03): : 134 - 134
  • [4] Multiscale empirical interpolation for solving nonlinear PDEs
    Calo, Victor M.
    Efendiev, Yalchin
    Galvisd, Juan
    Ghommem, Mehdi
    JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 278 : 204 - 220
  • [5] Meshless Conservative Scheme for Multivariate Nonlinear Hamiltonian PDEs
    Sun, Zhengjie
    Wu, Zongmin
    JOURNAL OF SCIENTIFIC COMPUTING, 2018, 76 (02) : 1168 - 1187
  • [6] Meshless Conservative Scheme for Multivariate Nonlinear Hamiltonian PDEs
    Zhengjie Sun
    Zongmin Wu
    Journal of Scientific Computing, 2018, 76 : 1168 - 1187
  • [7] Model reduction for parametric and nonlinear PDEs by matrix interpolation
    Nguyen, N. H.
    Le, T. H. H.
    Khoo, B. C.
    2015 INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES FOR COMMUNICATIONS (ATC), 2015, : 105 - 110
  • [8] A splitting method for fully nonlinear degenerate parabolic PDEs
    Tan, Xiaolu
    ELECTRONIC JOURNAL OF PROBABILITY, 2013, 18 : 1 - 24
  • [9] Gibbs measures as unique KMS equilibrium states of nonlinear Hamiltonian PDEs
    Ammari, Zied
    Sohinger, Vedran
    REVISTA MATEMATICA IBEROAMERICANA, 2023, 39 (01) : 29 - 90
  • [10] Birkhoff normal form for splitting methods applied to semilinear Hamiltonian PDEs. Part II. Abstract splitting
    Faou, Erwan
    Grebert, Benoit
    Paturel, Eric
    NUMERISCHE MATHEMATIK, 2010, 114 (03) : 459 - 490