On the number of Z2Z4 and ZpZp2-additive cyclic codes

被引:0
|
作者
Yildiz, Eda [1 ]
Abualrub, Taher [2 ]
Aydogdu, Ismail [1 ]
机构
[1] Yildiz Tech Univ, Dept Math, Istanbul, Turkey
[2] Amer Univ Sharjah, Dept Math & Stat, Sharjah, U Arab Emirates
关键词
Z(2)Z(4)-additive cyclic codes; Z(p)Z(p2)-additive cyclic codes; counting; separable; non-separable codes;
D O I
10.1007/s00200-020-00474-4
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we give the exact number of Z(2)Z(4)-additive cyclic codes of length n = r + s, for any positive integer r and any positive odd integer s. We will provide a formula for the the number of separable Z(2)Z(4)-additive cyclic codes of length n and then a formula for the number of non-separable Z(2)Z(4)-additive cyclic codes of length n. Then, we have generalized our approach to give the exact number of Z(p)Z(p2)-additive cyclic codes of length n = r + s, for any prime p, any positive integer r and any positive integer s where gcd (p, s) = 1. Moreover, we will provide examples of the number of these codes with different lengths n = r + s.
引用
收藏
页码:81 / 97
页数:17
相关论文
共 50 条
  • [1] On the generators of Z2Z4[u]-additive codes and additive cyclic codes
    Wu, Huazhang
    Geng, Jie
    Yu, Hao
    [J]. PROCEEDINGS OF 2024 3RD INTERNATIONAL CONFERENCE ON CRYPTOGRAPHY, NETWORK SECURITY AND COMMUNICATION TECHNOLOGY, CNSCT 2024, 2024, : 458 - 462
  • [2] Z2Z2Z4-ADDITIVE CYCLIC CODES
    Wu, Tingting
    Gao, Jian
    Gao, Yun
    Fu, Fang-Wei
    [J]. ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2018, 12 (04) : 641 - 657
  • [3] Z2Z4-Additive Cyclic Codes
    Abualrub, Taher
    Siap, Irfan
    Aydin, Nuh
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (03) : 1508 - 1514
  • [4] Z2Z4-Additive Quasi-Cyclic Codes
    Shi, Minjia
    Li, Shitao
    Sole, Patrick
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2021, 67 (11) : 7232 - 7239
  • [5] Z2Z4-Additive Cyclic Codes: Kernel and Rank
    Borges, Joaquim
    Dougherty, Steven T.
    Fernandez-Cordoba, Cristina
    Ten-Valls, Roger
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (04) : 2119 - 2127
  • [6] Binary Images of Z2Z4-Additive Cyclic Codes
    Borges, Joaquim
    Dougherty, Steven T.
    Fernandez-Cordoba, Cristina
    Ten-Valls, Roger
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (12) : 7551 - 7556
  • [7] Z2Z4-Additive Cyclic Codes, Generator Polynomials, and Dual Codes
    Borges, Joaquim
    Fernandez-Cordoba, Cristina
    Ten-Valls, Roger
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2016, 62 (11) : 6348 - 6354
  • [8] The structure of Z(2)Z(2)s-additive cyclic codes
    Aydogdu, Ismail
    Abualrub, Taher
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2018, 10 (04)
  • [9] Z2Z4Z8-Cyclic codes
    Aydogdu, Ismail
    Gursoy, Fatmanur
    [J]. JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2019, 60 (1-2) : 327 - 341
  • [10] Counting Z2Z4-Additive Codes
    Dougherty, Steven T.
    Salturk, Esengul
    [J]. NONCOMMUTATIVE RINGS AND THEIR APPLICATIONS, 2015, 634 : 137 - 147