On the number of Z2Z4 and ZpZp2-additive cyclic codes

被引:0
|
作者
Yildiz, Eda [1 ]
Abualrub, Taher [2 ]
Aydogdu, Ismail [1 ]
机构
[1] Yildiz Tech Univ, Dept Math, Istanbul, Turkey
[2] Amer Univ Sharjah, Dept Math & Stat, Sharjah, U Arab Emirates
关键词
Z(2)Z(4)-additive cyclic codes; Z(p)Z(p2)-additive cyclic codes; counting; separable; non-separable codes;
D O I
10.1007/s00200-020-00474-4
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we give the exact number of Z(2)Z(4)-additive cyclic codes of length n = r + s, for any positive integer r and any positive odd integer s. We will provide a formula for the the number of separable Z(2)Z(4)-additive cyclic codes of length n and then a formula for the number of non-separable Z(2)Z(4)-additive cyclic codes of length n. Then, we have generalized our approach to give the exact number of Z(p)Z(p2)-additive cyclic codes of length n = r + s, for any prime p, any positive integer r and any positive integer s where gcd (p, s) = 1. Moreover, we will provide examples of the number of these codes with different lengths n = r + s.
引用
收藏
页码:81 / 97
页数:17
相关论文
共 50 条
  • [41] On the structure of Z2Z2[u3]-linear and cyclic codes
    Aydogdu, Ismail
    Siap, Irfan
    Ten-Valls, Roger
    FINITE FIELDS AND THEIR APPLICATIONS, 2017, 48 : 241 - 260
  • [42] ON REVERSIBLE Z2-DOUBLE CYCLIC CODES
    Patanker, Nupur
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2023, 60 (02) : 443 - 460
  • [43] On double cyclic codes over Z2
    Aydogdu, Ismail
    AIMS MATHEMATICS, 2024, 9 (05): : 11076 - 11091
  • [44] Cyclic codes of length 2e over Z4
    Abualrub, T
    Oehmke, R
    DISCRETE APPLIED MATHEMATICS, 2003, 128 (01) : 3 - 9
  • [45] The rank of Z4 cyclic codes of length 2e
    Abualrub, T
    Ghrayeb, A
    Oehmke, RH
    ISCCSP : 2004 FIRST INTERNATIONAL SYMPOSIUM ON CONTROL, COMMUNICATIONS AND SIGNAL PROCESSING, 2004, : 651 - 654
  • [46] On the generators of Z4 cyclic codes of length 2e
    Abualrub, T
    Oehmke, R
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (09) : 2126 - 2133
  • [47] Cyclic codes over Z2 + uZ2 + u2Z2 + ... + uk-1Z2
    Al-Ashker, Mohammed
    Hamoudeh, Mohammed
    TURKISH JOURNAL OF MATHEMATICS, 2011, 35 (04) : 737 - 749
  • [48] ASYMPTOTICALLY GOOD ZpZp[u]/(ut)-ADDITIVE CYCLIC CODES
    Yao, Ting
    Xu, Heqian
    Tang, Yongsheng
    Zhu, Shixin
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2023, 17 (05) : 1290 - 1301
  • [49] Permutation decoding of Z2Z4-linear codes
    Joaquin Bernal, Jose
    Borges, Joaquim
    Fernandez-Cordoba, Cristina
    Villanueva, Merce
    DESIGNS CODES AND CRYPTOGRAPHY, 2015, 76 (02) : 269 - 277
  • [50] Z2Z4-linear codes: rank and kernel
    Fernandez-Cordoba, Cristina
    Pujol, Jaume
    Villanueva, Merce
    DESIGNS CODES AND CRYPTOGRAPHY, 2010, 56 (01) : 43 - 59