On the number of Z2Z4 and ZpZp2-additive cyclic codes

被引:0
|
作者
Yildiz, Eda [1 ]
Abualrub, Taher [2 ]
Aydogdu, Ismail [1 ]
机构
[1] Yildiz Tech Univ, Dept Math, Istanbul, Turkey
[2] Amer Univ Sharjah, Dept Math & Stat, Sharjah, U Arab Emirates
关键词
Z(2)Z(4)-additive cyclic codes; Z(p)Z(p2)-additive cyclic codes; counting; separable; non-separable codes;
D O I
10.1007/s00200-020-00474-4
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we give the exact number of Z(2)Z(4)-additive cyclic codes of length n = r + s, for any positive integer r and any positive odd integer s. We will provide a formula for the the number of separable Z(2)Z(4)-additive cyclic codes of length n and then a formula for the number of non-separable Z(2)Z(4)-additive cyclic codes of length n. Then, we have generalized our approach to give the exact number of Z(p)Z(p2)-additive cyclic codes of length n = r + s, for any prime p, any positive integer r and any positive integer s where gcd (p, s) = 1. Moreover, we will provide examples of the number of these codes with different lengths n = r + s.
引用
下载
收藏
页码:81 / 97
页数:17
相关论文
共 50 条
  • [21] Z2Z2[u4]-cyclic codes and their duals
    Srinivasulu, B.
    Seneviratne, Padmapani
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (04):
  • [22] Additive Codes over Z2 x Z4
    Borges, Joaquim
    Fernandez-Cordoba, Cristina
    Dougherty, Steven T.
    2010 IEEE INFORMATION THEORY WORKSHOP (ITW), 2010,
  • [23] On Z2Z4-additive complementary dual codes and related LCD codes
    Benbelkacem, N.
    Borges, J.
    Dougherty, S. T.
    Fernandez-Cordoba, C.
    FINITE FIELDS AND THEIR APPLICATIONS, 2020, 62
  • [24] On Z2Z4-additive polycyclic codes and their Gray images
    Wu, Rongsheng
    Shi, Minjia
    DESIGNS CODES AND CRYPTOGRAPHY, 2022, 90 (11) : 2551 - 2562
  • [25] Quantum codes from Z2Z2[u]/⟨u4⟩-cyclic codes
    Biswas, Soumak
    Bhaintwal, Maheshanand
    DESIGNS CODES AND CRYPTOGRAPHY, 2022, 90 (02) : 343 - 366
  • [26] Z2Z2[u]-Cyclic and Constacyclic Codes
    Aydogdu, Ismail
    Abualrub, Taher
    Siap, Irfan
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (08) : 4883 - 4893
  • [27] Z2Z4-Additive formally self-dual codes
    Dougherty, S. T.
    Fernandez-Cordoba, C.
    DESIGNS CODES AND CRYPTOGRAPHY, 2014, 72 (02) : 435 - 453
  • [28] The Structure of ZpZp2 - Cyclic Codes
    Dong, Xuedong
    PROCEEDINGS OF THE 2016 6TH INTERNATIONAL CONFERENCE ON MACHINERY, MATERIALS, ENVIRONMENT, BIOTECHNOLOGY AND COMPUTER (MMEBC), 2016, 88 : 1713 - 1716
  • [29] Z2[u]Z2[u]-Additive codes
    Shashirekha, G.
    Bhatta, G. R. Vadiraja
    Poojary, Prasanna
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2024,
  • [30] Z4R-additive cyclic and constacyclic codes and MDSS codes
    Ghajari, Arazgol
    Khashyarmanesh, Kazem
    Abualrub, Taher
    Siap, Irfan
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2023, 15 (01)