Smooth Positons of the Second-Type Derivative Nonlinear Schr?dinger Equation

被引:0
|
作者
刘树芝 [1 ]
张永帅 [2 ]
贺劲松 [1 ]
机构
[1] Department of Mathematics Ningbo University
[2] School of Science Zhejiang University of Science and Technology
基金
中国国家自然科学基金;
关键词
Chen-Lee-Liu equation; positon; breather-positon; Daroboux transformation;
D O I
暂无
中图分类号
O175.29 [非线性偏微分方程];
学科分类号
摘要
We construct the soliton solution and smooth positon solution of the second-type derivative nonlinear Schr¨odinger(DNLSII) equation. Additionally, we present a detailed discussion about the decomposition of the positon solution, and display its approximate orbits and variable "phase shift". The second and third order breather-positon solutions are also constructed.
引用
收藏
页码:357 / 361
页数:5
相关论文
共 50 条
  • [41] Derivation of Nonlinear Schrödinger Equation
    Xiang-Yao Wu
    Bai-Jun Zhang
    Xiao-Jing Liu
    Li Xiao
    Yi-Heng Wu
    Yan Wang
    Qing-Cai Wang
    Shuang Cheng
    International Journal of Theoretical Physics, 2010, 49 : 2437 - 2445
  • [42] Eigenvalues of the nonlinear Schrödinger equation
    S. Geltman
    The European Physical Journal D, 2012, 66
  • [43] Collapse in the nonlinear Schrödinger equation
    Yu. N. Ovchinnikov
    I. M. Sigal
    Journal of Experimental and Theoretical Physics, 1999, 89 : 35 - 40
  • [44] Fractional nonlinear Schrödinger equation
    Jesus A. Mendez-Navarro
    Pavel I. Naumkin
    Isahi Sánchez-Suárez
    Zeitschrift für angewandte Mathematik und Physik, 2019, 70
  • [45] Truncation Analysis for the Derivative Schrödinger Equation
    Peng Cheng Xu
    Qian Shun Chang
    Bo Ling Guo
    Acta Mathematica Sinica, 2002, 18 : 137 - 146
  • [46] N-Soliton Solutions of General Nonlinear Schrdinger Equation with Derivative
    ZHAI Wen CHEN Deng-Yuan Department of Mathematics
    Communications in Theoretical Physics, 2008, 49 (05) : 1101 - 1104
  • [47] Inverse scattering transform for the integrable fractional derivative nonlinear Schrödinger equation
    An, Ling
    Ling, Liming
    Zhang, Xiaoen
    PHYSICA D-NONLINEAR PHENOMENA, 2024, 458
  • [48] Some regularity properties of scattering data for the derivative nonlinear Schrödinger equation
    Weng, Weifang
    Yan, Zhenya
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2025, 77 (05)
  • [49] Discrete Derivative Nonlinear Schrödinger Equations
    Hennig, Dirk
    Cuevas-Maraver, Jesus
    MATHEMATICS, 2025, 13 (01)
  • [50] On an inequality of Trudinger type and its application to a nonlinear Schrödinger equation
    Sh. M. Nasibov
    Mathematical Notes, 2006, 80 : 740 - 743