Smooth Positons of the Second-Type Derivative Nonlinear Schr?dinger Equation

被引:0
|
作者
刘树芝 [1 ]
张永帅 [2 ]
贺劲松 [1 ]
机构
[1] Department of Mathematics Ningbo University
[2] School of Science Zhejiang University of Science and Technology
基金
中国国家自然科学基金;
关键词
Chen-Lee-Liu equation; positon; breather-positon; Daroboux transformation;
D O I
暂无
中图分类号
O175.29 [非线性偏微分方程];
学科分类号
摘要
We construct the soliton solution and smooth positon solution of the second-type derivative nonlinear Schr¨odinger(DNLSII) equation. Additionally, we present a detailed discussion about the decomposition of the positon solution, and display its approximate orbits and variable "phase shift". The second and third order breather-positon solutions are also constructed.
引用
收藏
页码:357 / 361
页数:5
相关论文
共 50 条
  • [31] Numerical inverse scattering transform for the derivative nonlinear Schrödinger equation
    Cui, Shikun
    Wang, Zhen
    NONLINEARITY, 2024, 37 (10)
  • [32] Orbital stability of solitary waves for derivative nonlinear Schrödinger equation
    Soonsik Kwon
    Yifei Wu
    Journal d'Analyse Mathématique, 2018, 135 : 473 - 486
  • [33] On the Riemann–Hilbert problem of a generalized derivative nonlinear Schr?dinger equation
    Bei-Bei Hu
    Ling Zhang
    Tie-Cheng Xia
    Communications in Theoretical Physics, 2021, 73 (01) : 10 - 21
  • [34] Prolongation structures of the super mixed derivative nonlinear Schrödinger equation
    Su, Huajie
    Yu, Yuanyuan
    Guo, Jiafeng
    Yan, Zhaowen
    PHYSICA SCRIPTA, 2025, 100 (03)
  • [35] THE ZAKHAROV-SHABAT EQUATIONS FOR THE DERIVATIVE NONLINEAR SCHRDINGER EQUATION
    黄念宁
    廖国钧
    ChineseScienceBulletin, 1991, (22) : 1935 - 1936
  • [36] The vector derivative nonlinear Schrödinger equation on the half-line
    Liu, Huan
    Geng, Xianguo
    IMA Journal of Applied Mathematics (Institute of Mathematics and Its Applications), 2018, 83 (01): : 148 - 173
  • [37] Notes on Global Existence for the Nonlinear Schrdinger Equation Involves Derivative
    Shi Yang ZHENG
    Acta Mathematica Sinica(English Series), 2014, 30 (10) : 1735 - 1747
  • [38] Global well-posedness for the derivative nonlinear Schrödinger equation
    Hajer Bahouri
    Galina Perelman
    Inventiones mathematicae, 2022, 229 : 639 - 688
  • [39] Stability of Solitary Waves for a Generalized Derivative Nonlinear Schrödinger Equation
    Xiao Liu
    Gideon Simpson
    Catherine Sulem
    Journal of Nonlinear Science, 2013, 23 : 557 - 583
  • [40] Explicit Solutions of the Nonlinear Schrödinger-Type Equation
    L.N. Gumilyov Eurasian National University, Astana, Kazakhstan
    Springer Proc. Math. Stat., (179-187):