Smooth Positons of the Second-Type Derivative Nonlinear Schr?dinger Equation

被引:0
|
作者
刘树芝 [1 ]
张永帅 [2 ]
贺劲松 [1 ]
机构
[1] Department of Mathematics Ningbo University
[2] School of Science Zhejiang University of Science and Technology
基金
中国国家自然科学基金;
关键词
Chen-Lee-Liu equation; positon; breather-positon; Daroboux transformation;
D O I
暂无
中图分类号
O175.29 [非线性偏微分方程];
学科分类号
摘要
We construct the soliton solution and smooth positon solution of the second-type derivative nonlinear Schr¨odinger(DNLSII) equation. Additionally, we present a detailed discussion about the decomposition of the positon solution, and display its approximate orbits and variable "phase shift". The second and third order breather-positon solutions are also constructed.
引用
收藏
页码:357 / 361
页数:5
相关论文
共 50 条
  • [1] Smooth Positons of the Second-Type Derivative Nonlinear Schrodinger Equation
    Liu, Shu-Zhi
    Zhang, Yong-Shuai
    He, Jing-Song
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2019, 71 (04) : 357 - 361
  • [2] Darboux Transformation of the Second-Type Derivative Nonlinear Schrödinger Equation
    Yongshuai Zhang
    Lijuan Guo
    Jingsong He
    Zixiang Zhou
    Letters in Mathematical Physics, 2015, 105 : 853 - 891
  • [3] Generating mechanism and dynamic of the smooth positons for the derivative nonlinear Schrödinger equation
    Wenjuan Song
    Shuwei Xu
    Maohua Li
    Jingsong He
    Nonlinear Dynamics, 2019, 97 : 2135 - 2145
  • [4] The nth-Darboux Transformation and Explicit Solutions of the PT-Symmetry Second-Type Derivative Nonlinear Schrödinger Equation
    Siqi Zhou
    Jiapeng Liu
    Siran Chen
    Yuqin Yao
    Journal of Nonlinear Mathematical Physics, 2022, 29 : 573 - 587
  • [5] Darboux Transformation of the Second-Type Derivative Nonlinear Schrodinger Equation
    Zhang, Yongshuai
    Guo, Lijuan
    He, Jingsong
    Zhou, Zixiang
    LETTERS IN MATHEMATICAL PHYSICS, 2015, 105 (06) : 853 - 891
  • [6] Dynamical evolutions of optical smooth positons in variable coefficient nonlinear Schrödinger equation with external potentials
    Manikandan K.
    Serikbayev N.
    Manigandan M.
    Sabareeshwaran M.
    Optik, 2023, 288
  • [7] Darboux transformation of the second-type nonlocal derivative nonlinear Schrodinger equation
    Meng, De-Xin
    Li, Kuang-Zhong
    MODERN PHYSICS LETTERS B, 2019, 33 (10):
  • [8] Norm inflation for the derivative nonlinear Schrödinger equation
    Wang, Yuzhao
    Zine, Younes
    COMPTES RENDUS MATHEMATIQUE, 2024, 362
  • [9] Complex excitations for the derivative nonlinear Schrödinger equation
    Huijuan Zhou
    Yong Chen
    Xiaoyan Tang
    Yuqi Li
    Nonlinear Dynamics, 2022, 109 : 1947 - 1967
  • [10] Strange Tori of the Derivative Nonlinear Schrödinger Equation
    Y. Charles Li
    Letters in Mathematical Physics, 2007, 80 : 83 - 99