Harnessing the native type I-B CRISPR-Cas for genome editing in a polyploid archaeon

被引:0
|
作者
Feiyue Cheng [1 ,2 ]
Luyao Gong [1 ,2 ]
Dahe Zhao [1 ,2 ]
Haibo Yang [1 ,2 ]
Jian Zhou [1 ]
Ming Li [1 ]
Hua Xiang [1 ,2 ]
机构
[1] State Key Laboratory of Microbial Resources, Institute of Microbiology Chinese Academy of Sciences
[2] University of Chinese Academy of Sciences
基金
中国国家自然科学基金;
关键词
Haloarcula hispanica; CRISPR-Cas; Genome editing; Polyploid;
D O I
暂无
中图分类号
Q78 [基因工程(遗传工程)];
学科分类号
071007 ; 0836 ; 090102 ;
摘要
Research on CRISPR-Cas(clustered regularly interspaced short palindromic repeats-CRISPR associated protein) systems has led to the revolutionary CRISPR/Cas9 genome editing technique. However, for most archaea and half of bacteria, exploitation of their native CRISPR-Cas machineries may be more straightforward and convenient. In this study, we harnessed the native type I-B CRISPR-Cas system for precise genome editing in the polyploid haloarchaeon Haloarcula hispanica. After testing different designs, the editing tool was optimized to be a single plasmid that carries both the self-targeting miniCRISPR and a 600-800 bp donor. Significantly, chromosomal modifications, such as gene deletion, gene tagging or single nucleotide substitution, were precisely introduced into the vast majority of the transformants. Moreover, we showed that simultaneous editing of two genomic loci could also be readily achieved by one step. In summary, our data demonstrate that the haloarchaeal CRISPR-Cas system can be harnessed for genome editing in this polyploid archaeon, and highlight the convenience and efficiency of the native CRISPR-based genome editing strategy.
引用
收藏
页码:541 / 548
页数:8
相关论文
共 50 条
  • [21] Identification of an anti-CRISPR protein that inhibits the CRISPR-Cas type I-B system in Clostridioides difficile
    Muzyukina, Polina
    Shkaruta, Anton
    Guzman, Noemi M.
    Andreani, Jessica
    Borges, Adair L.
    Bondy-Denomy, Joseph
    Maikova, Anna
    Semenova, Ekaterina
    Severinov, Konstantin
    Soutourina, Olga
    MSPHERE, 2023, 8 (06) : e0040123
  • [22] Genome editing using CRISPR-Cas nucleases
    Joung, J. K.
    HUMAN GENE THERAPY, 2016, 27 (11) : A7 - A7
  • [23] The CRISPR-Cas system: beyond genome editing
    Moineau, Sylvain
    Croteau, Felix R.
    Rousseau, Genevieve M.
    M S-MEDECINE SCIENCES, 2018, 34 (10): : 813 - 819
  • [24] Genome Editing in Bacteria: CRISPR-Cas and Beyond
    Arroyo-Olarte, Ruben D.
    Bravo Rodriguez, Ricardo
    Morales-Rios, Edgar
    MICROORGANISMS, 2021, 9 (04)
  • [25] Harnessing heterologous and endogenous CRISPR-Cas machineries for efficient markerless genome editing in Clostridium
    Pyne, Michael E.
    Bruder, Mark R.
    Moo-Young, Murray
    Chung, Duane A.
    Chou, C. Perry
    SCIENTIFIC REPORTS, 2016, 6
  • [26] Harnessing heterologous and endogenous CRISPR-Cas machineries for efficient markerless genome editing in Clostridium
    Michael E. Pyne
    Mark R. Bruder
    Murray Moo-Young
    Duane A. Chung
    C. Perry Chou
    Scientific Reports, 6
  • [27] Advancement of animal and poultry nutrition: Harnessing the power of CRISPR-Cas genome editing technology
    Mishu, Mahbuba Akther
    Nath, Sabuj Kanti
    Sohidullah, M.
    Hossain, Md. Taslim
    JOURNAL OF ADVANCED VETERINARY AND ANIMAL RESEARCH, 2024, 11 (02) : 483 - 493
  • [28] Requirements for a successful defence reaction by the CRISPR-Cas subtype I-B system
    Stoll, Britta
    Maier, Lisa-Katharina
    Lange, Sita J.
    Brendel, Jutta
    Fischer, Susan
    Backofen, Rolf
    Marchfelder, Anita
    BIOCHEMICAL SOCIETY TRANSACTIONS, 2013, 41 : 1444 - 1448
  • [29] Harnessing CRISPR-Cas system diversity for gene editing technologies
    Alexander McKay
    Gaetan Burgio
    The Journal of Biomedical Research, 2021, 35 (02) : 91 - 106
  • [30] Genome Sequence of Salegentibacter mishustinae KCTC 12263, Containing a Complete Subtype I-B CRISPR-Cas System
    Zhang, Fei
    Lin, Wenxin
    Zhang, Rui
    Zheng, Qiang
    Jiao, Nianzhi
    GENOME ANNOUNCEMENTS, 2016, 4 (02)