Harnessing the native type I-B CRISPR-Cas for genome editing in a polyploid archaeon

被引:0
|
作者
Feiyue Cheng [1 ,2 ]
Luyao Gong [1 ,2 ]
Dahe Zhao [1 ,2 ]
Haibo Yang [1 ,2 ]
Jian Zhou [1 ]
Ming Li [1 ]
Hua Xiang [1 ,2 ]
机构
[1] State Key Laboratory of Microbial Resources, Institute of Microbiology Chinese Academy of Sciences
[2] University of Chinese Academy of Sciences
基金
中国国家自然科学基金;
关键词
Haloarcula hispanica; CRISPR-Cas; Genome editing; Polyploid;
D O I
暂无
中图分类号
Q78 [基因工程(遗传工程)];
学科分类号
071007 ; 0836 ; 090102 ;
摘要
Research on CRISPR-Cas(clustered regularly interspaced short palindromic repeats-CRISPR associated protein) systems has led to the revolutionary CRISPR/Cas9 genome editing technique. However, for most archaea and half of bacteria, exploitation of their native CRISPR-Cas machineries may be more straightforward and convenient. In this study, we harnessed the native type I-B CRISPR-Cas system for precise genome editing in the polyploid haloarchaeon Haloarcula hispanica. After testing different designs, the editing tool was optimized to be a single plasmid that carries both the self-targeting miniCRISPR and a 600-800 bp donor. Significantly, chromosomal modifications, such as gene deletion, gene tagging or single nucleotide substitution, were precisely introduced into the vast majority of the transformants. Moreover, we showed that simultaneous editing of two genomic loci could also be readily achieved by one step. In summary, our data demonstrate that the haloarchaeal CRISPR-Cas system can be harnessed for genome editing in this polyploid archaeon, and highlight the convenience and efficiency of the native CRISPR-based genome editing strategy.
引用
收藏
页码:541 / 548
页数:8
相关论文
共 50 条
  • [31] Harnessing CRISPR-Cas system diversity for gene editing technologies
    McKay, Alexander
    Burgio, Gaetan
    JOURNAL OF BIOMEDICAL RESEARCH, 2021, 35 (02): : 91 - 106
  • [32] Unveiling the Genetic Symphony: Harnessing CRISPR-Cas Genome Editing for Effective Insect Pest Management
    Komal, J.
    Desai, H. R.
    Samal, Ipsita
    Mastinu, Andrea
    Patel, R. D.
    Kumar, P. V. Dinesh
    Majhi, Prasanta Kumar
    Mahanta, Deepak Kumar
    Bhoi, Tanmaya Kumar
    PLANTS-BASEL, 2023, 12 (23):
  • [33] CRISPR-Cas systems for genome editing of mammalian cells
    Mani, Indra
    Arazoe, Takayuki
    Singh, Vijai
    REPROGRAMMING THE GENOME: CRISPR-CAS-BASED HUMAN DISEASE THERAPY, 2021, 181 : 15 - 30
  • [34] Simplified CRISPR-Cas genome editing for Saccharomyces cerevisiae
    Generoso, Wesley Cardoso
    Gottardi, Manuela
    Oreb, Mislay
    Boles, Eckhard
    JOURNAL OF MICROBIOLOGICAL METHODS, 2016, 127 : 203 - 205
  • [35] Development of CRISPR-Cas systems for genome editing and beyond
    Zhang, F.
    QUARTERLY REVIEWS OF BIOPHYSICS, 2019, 52
  • [36] Multiplex genome editing of microorganisms using CRISPR-Cas
    Adiego-Perez, Belen
    Randazzo, Paola
    Daran, Jean Marc
    Verwaal, Rene
    Roubos, Johannes. A.
    Daran-Lapujade, Pascale
    van der Oost, John
    FEMS MICROBIOLOGY LETTERS, 2019, 366 (08)
  • [37] CRISPR-Cas Systems and Genome Editing: Beginning the Era of CRISPR/Cas Therapies for Humans
    Karpov, Dmitry S.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (10)
  • [38] Dual nuclease activity of a Cas2 protein in CRISPR-Cas subtype I-B of Leptospira interrogans
    Dixit, Bhuvan
    Ghosh, Karukriti Kaushik
    Fernandes, Gary
    Kumar, Pankaj
    Gogoi, Prerana
    Kumar, Manish
    FEBS LETTERS, 2016, 590 (07) : 1002 - 1016
  • [39] Genome editing in the mammalian brain using the CRISPR-Cas system
    Nishiyama, Jun
    NEUROSCIENCE RESEARCH, 2019, 141 : 4 - 12
  • [40] Structural biology of CRISPR-Cas immunity and genome editing enzymes
    Wang, Joy Y.
    Pausch, Patrick
    Doudna, Jennifer A.
    NATURE REVIEWS MICROBIOLOGY, 2022, 20 (11) : 641 - 656