Harnessing the native type I-B CRISPR-Cas for genome editing in a polyploid archaeon

被引:0
|
作者
Feiyue Cheng [1 ,2 ]
Luyao Gong [1 ,2 ]
Dahe Zhao [1 ,2 ]
Haibo Yang [1 ,2 ]
Jian Zhou [1 ]
Ming Li [1 ]
Hua Xiang [1 ,2 ]
机构
[1] State Key Laboratory of Microbial Resources, Institute of Microbiology Chinese Academy of Sciences
[2] University of Chinese Academy of Sciences
基金
中国国家自然科学基金;
关键词
Haloarcula hispanica; CRISPR-Cas; Genome editing; Polyploid;
D O I
暂无
中图分类号
Q78 [基因工程(遗传工程)];
学科分类号
071007 ; 0836 ; 090102 ;
摘要
Research on CRISPR-Cas(clustered regularly interspaced short palindromic repeats-CRISPR associated protein) systems has led to the revolutionary CRISPR/Cas9 genome editing technique. However, for most archaea and half of bacteria, exploitation of their native CRISPR-Cas machineries may be more straightforward and convenient. In this study, we harnessed the native type I-B CRISPR-Cas system for precise genome editing in the polyploid haloarchaeon Haloarcula hispanica. After testing different designs, the editing tool was optimized to be a single plasmid that carries both the self-targeting miniCRISPR and a 600-800 bp donor. Significantly, chromosomal modifications, such as gene deletion, gene tagging or single nucleotide substitution, were precisely introduced into the vast majority of the transformants. Moreover, we showed that simultaneous editing of two genomic loci could also be readily achieved by one step. In summary, our data demonstrate that the haloarchaeal CRISPR-Cas system can be harnessed for genome editing in this polyploid archaeon, and highlight the convenience and efficiency of the native CRISPR-based genome editing strategy.
引用
收藏
页码:541 / 548
页数:8
相关论文
共 50 条
  • [41] Genome editing using programmable nucleases including CRISPR-Cas
    Kim, Hyongbum
    INTERNATIONAL JOURNAL OF ANTIMICROBIAL AGENTS, 2017, 50 : S54 - S54
  • [42] Efficient genome editing in zebrafish using a CRISPR-Cas system
    Woong Y Hwang
    Yanfang Fu
    Deepak Reyon
    Morgan L Maeder
    Shengdar Q Tsai
    Jeffry D Sander
    Randall T Peterson
    J-R Joanna Yeh
    J Keith Joung
    Nature Biotechnology, 2013, 31 : 227 - 229
  • [43] The implementation of the CRISPR-Cas system for Kluyveromyces lactis genome editing
    Gedvilaite, A.
    Ziogiene, D.
    Norkiene, M.
    Valaviciute, M.
    FEBS OPEN BIO, 2018, 8 : 193 - 193
  • [44] CRISPR-Cas system: a precise tool for plant genome editing
    Saraswat, Pooja
    Ranjan, Rajiv
    NUCLEUS-INDIA, 2022, 65 (01): : 81 - 98
  • [45] Progress of CRISPR-Cas Based Genome Editing in Photosynthetic Microbes
    Naduthodi, Mihris Ibnu Saleem
    Barbosa, Maria J.
    van der Oost, John
    BIOTECHNOLOGY JOURNAL, 2018, 13 (09)
  • [46] Genome Editing in Mammalian Cell Lines using CRISPR-Cas
    Liu, Kaiwen Ivy
    Sutrisnoh, Norfala-Aliah Binte
    Wang, Yuanming
    Tan, Meng How
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2019, (146):
  • [47] Efficient genome editing in zebrafish using a CRISPR-Cas system
    Hwang, Woong Y.
    Fu, Yanfang
    Reyon, Deepak
    Maeder, Morgan L.
    Tsai, Shengdar Q.
    Sander, Jeffry D.
    Peterson, Randall T.
    Yeh, J-R Joanna
    Joung, J. Keith
    NATURE BIOTECHNOLOGY, 2013, 31 (03) : 227 - 229
  • [48] CRISPR-Cas for genome editing: Classification, mechanism, designing and applications
    Bhatia, Simran
    Pooja, Sudesh Kumar
    Yadav, Sudesh Kumar
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2023, 238
  • [49] CRISPR-Cas nucleases and base editors for plant genome editing
    Gurel, Filiz
    Zhang, Yingxiao
    Sretenovic, Simon
    Qi, Yiping
    ABIOTECH, 2020, 1 (01) : 74 - 87
  • [50] Protospacer-Adjacent Motif Specificity during Clostridioides difficile Type I-B CRISPR-Cas Interference and Adaptation
    Maikova, Anna
    Boudry, Pierre
    Shiriaeva, Anna
    Vasileva, Aleksandra
    Boutserin, Anais
    Medvedeva, Sofia
    Semenova, Ekaterina
    Severinov, Konstantin
    Soutourina, Olga
    MBIO, 2021, 12 (04):