Genome Editing in Bacteria: CRISPR-Cas and Beyond

被引:69
|
作者
Arroyo-Olarte, Ruben D. [1 ]
Bravo Rodriguez, Ricardo [1 ]
Morales-Rios, Edgar [1 ]
机构
[1] Inst Politecn Nacl CINVESTAV, Ctr Invest & Estudios Avanzados, Dept Bioquim, Mexico City 07360, DF, Mexico
关键词
CRISPR-Cas; prokaryotes; genome editing; ribonucleoprotein; suicide plasmids; HOMOLOGOUS RECOMBINATION; ESCHERICHIA-COLI; MOLECULAR-MECHANISM; SMALL RNA; DNA; SYSTEM; BASE; DEAMINASE; ENDONUCLEASE; CHROMOSOME;
D O I
10.3390/microorganisms9040844
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Genome editing in bacteria encompasses a wide array of laborious and multi-step methods such as suicide plasmids. The discovery and applications of clustered regularly interspaced short palindromic repeats (CRISPR)-Cas based technologies have revolutionized genome editing in eukaryotic organisms due to its simplicity and programmability. Nevertheless, this system has not been as widely favored for bacterial genome editing. In this review, we summarize the main approaches and difficulties associated with CRISPR-Cas-mediated genome editing in bacteria and present some alternatives to circumvent these issues, including CRISPR nickases, Cas12a, base editors, CRISPR-associated transposases, prime-editing, endogenous CRISPR systems, and the use of pre-made ribonucleoprotein complexes of Cas proteins and guide RNAs. Finally, we also address fluorescent-protein-based methods to evaluate the efficacy of CRISPR-based systems for genome editing in bacteria. CRISPR-Cas still holds promise as a generalized genome-editing tool in bacteria and is developing further optimization for an expanded application in these organisms. This review provides a rarely offered comprehensive view of genome editing. It also aims to familiarize the microbiology community with an ever-growing genome-editing toolbox for bacteria.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] The CRISPR-Cas system: beyond genome editing
    Moineau, Sylvain
    Croteau, Felix R.
    Rousseau, Genevieve M.
    [J]. M S-MEDECINE SCIENCES, 2018, 34 (10): : 813 - 819
  • [2] Development of CRISPR-Cas systems for genome editing and beyond
    Zhang, F.
    [J]. QUARTERLY REVIEWS OF BIOPHYSICS, 2019, 52
  • [3] Exploiting CRISPR-Cas immune systems for genome editing in bacteria
    Barrangou, Rodolphe
    van Pijkeren, Jan-Peter
    [J]. CURRENT OPINION IN BIOTECHNOLOGY, 2016, 37 : 61 - 68
  • [4] Diversification of the CRISPR Toolbox: Applications of CRISPR-Cas Systems Beyond Genome Editing
    Balderston, Sarah
    Clouse, Gabrielle
    Ripoll, Juan-Jose
    Pratt, Grace K.
    Gasiunas, Giedrius
    Bock, Jens-Ole
    Bennett, Eric Paul
    Aran, Kiana
    [J]. CRISPR JOURNAL, 2021, 4 (03): : 400 - 415
  • [5] Harnessing CRISPR-Cas for oomycete genome editing
    Vink, Jochem N. A.
    Hayhurst, Max
    Gerth, Monica L.
    [J]. TRENDS IN MICROBIOLOGY, 2023, 31 (09) : 947 - 958
  • [6] Genome editing using CRISPR-Cas nucleases
    Joung, J. K.
    [J]. HUMAN GENE THERAPY, 2016, 27 (11) : A7 - A7
  • [7] CRISPR-Cas system: Toward a more efficient technology for genome editing and beyond
    Ahmadzadeh, Vahideh
    Farajnia, Safar
    Baghban, Roghayyeh
    Rahbarnia, Leila
    Zarredar, Habib
    [J]. JOURNAL OF CELLULAR BIOCHEMISTRY, 2019, 120 (10) : 16379 - 16392
  • [8] Improvements in the genetic editing technologies: CRISPR-Cas and beyond
    Mingarro, Gerard
    li del Olmo, Marcel
    [J]. GENE, 2023, 852
  • [9] Simplified CRISPR-Cas genome editing for Saccharomyces cerevisiae
    Generoso, Wesley Cardoso
    Gottardi, Manuela
    Oreb, Mislay
    Boles, Eckhard
    [J]. JOURNAL OF MICROBIOLOGICAL METHODS, 2016, 127 : 203 - 205
  • [10] CRISPR-Cas systems for genome editing of mammalian cells
    Mani, Indra
    Arazoe, Takayuki
    Singh, Vijai
    [J]. REPROGRAMMING THE GENOME: CRISPR-CAS-BASED HUMAN DISEASE THERAPY, 2021, 181 : 15 - 30