An asymmetric Orlicz centroid inequality for probability measures

被引:0
|
作者
HUANG QingZhong [1 ]
HE BinWu [1 ]
机构
[1] Department of Mathematics,Shanghai University
基金
中国国家自然科学基金;
关键词
M-addition; Orlicz centroid inequality; asymmetric Orlicz centroid bodies; asymmetric Lp centroid bodies;
D O I
暂无
中图分类号
O18 [几何、拓扑];
学科分类号
0701 ; 070101 ;
摘要
Using M-addition,an asymmetric Orlicz centroid inequality for absolutely continuous probability measures is established corresponding to Paouris and Pivovarov’s recent result on the symmetric case.As an application,we extend Haberl and Schuster’s asymmetric Lp centroid inequality from star bodies to compact sets.
引用
收藏
页码:1193 / 1202
页数:10
相关论文
共 50 条
  • [21] THE ORLICZ AFFINE ISOPERIMETRIC INEQUALITY
    Chen, Fangwei
    Yang, Congli
    Zhou, Jiazu
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2014, 17 (03): : 1079 - 1089
  • [22] Asymmetric Change-of-Probability Measures for Tail Risk Management
    Enayati, Saeede
    Pishro-Nik, Hossein
    SYSCON 2022: THE 16TH ANNUAL IEEE INTERNATIONAL SYSTEMS CONFERENCE (SYSCON), 2022,
  • [24] AN INEQUALITY FOR THE PERIMETER OF THE CENTROID BODY IN THE PLANE
    Guerrero-Zarazua, Zamantha
    Jeronimo-Castro, Jesus
    Jimenez-Lopez, Francisco G.
    Velasco-Garcia, Ulises
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2021, 24 (03): : 587 - 596
  • [25] Another Incenter-Centroid Inequality
    Fera, Giuseppe
    AMERICAN MATHEMATICAL MONTHLY, 2022, 129 (07): : 687 - 687
  • [26] Asymmetric Orlicz Radial Bodies
    Li, Hai
    Wang, Weidong
    Ma, Tongyi
    MATHEMATICS, 2019, 7 (07)
  • [27] Sylvester–Busemann Type Functionals with Respect to Orlicz Centroid Bodies
    Denghui Wu
    Peilin Guo
    Zhen-Hui Bu
    The Journal of Geometric Analysis, 2023, 33
  • [28] Orlicz-Aleksandrov-Fenchel Inequality or Orlicz Multiple Mixed Volumes
    Zhao, Chang-Jian
    JOURNAL OF FUNCTION SPACES, 2018, 2018
  • [29] HARDY INEQUALITY FOR ORLICZ LUXEMBOURG NORMS
    LOVE, ER
    ACTA MATHEMATICA HUNGARICA, 1990, 56 (3-4) : 247 - 253
  • [30] ORLICZ DUAL LOGARITHMIC MINKOWKI INEQUALITY
    Zhao, Chang-Jian
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2021, 24 (04): : 1031 - 1032