An asymmetric Orlicz centroid inequality for probability measures

被引:0
|
作者
HUANG QingZhong [1 ]
HE BinWu [1 ]
机构
[1] Department of Mathematics,Shanghai University
基金
中国国家自然科学基金;
关键词
M-addition; Orlicz centroid inequality; asymmetric Orlicz centroid bodies; asymmetric Lp centroid bodies;
D O I
暂无
中图分类号
O18 [几何、拓扑];
学科分类号
0701 ; 070101 ;
摘要
Using M-addition,an asymmetric Orlicz centroid inequality for absolutely continuous probability measures is established corresponding to Paouris and Pivovarov’s recent result on the symmetric case.As an application,we extend Haberl and Schuster’s asymmetric Lp centroid inequality from star bodies to compact sets.
引用
收藏
页码:1193 / 1202
页数:10
相关论文
共 50 条
  • [41] Sylvester-Busemann Type Functionals with Respect to Orlicz Centroid Bodies
    Wu, Denghui
    Guo, Peilin
    Bu, Zhen-Hui
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (06)
  • [42] The Lp-Busemann-Petty centroid inequality
    Campi, S
    Gronchi, P
    ADVANCES IN MATHEMATICS, 2002, 167 (01) : 128 - 141
  • [43] Volume Inequalities for Asymmetric Orlicz Zonotopes
    Yang, Congli
    Chen, Fangwei
    TAIWANESE JOURNAL OF MATHEMATICS, 2018, 22 (01): : 157 - 181
  • [44] The Orlicz-Minkowski problem for measure in Rn and Orlicz geominimal measures
    Mou, Shuang
    Zhu, Baocheng
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2019, 30 (11)
  • [45] A Landau-Kolmogorov inequality for Orlicz spaces
    Bang, HH
    Thu, MT
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2002, 7 (05) : 663 - 672
  • [46] Evaluation for Success Probability of Chaff Centroid Jamming
    高东华
    石秀华
    Journal of China Ordnance, 2008, (01) : 22 - 25
  • [47] The Orlicz Brunn–Minkowski Inequality for the Projection Body
    Du Zou
    Ge Xiong
    The Journal of Geometric Analysis, 2020, 30 : 2253 - 2272
  • [48] A Harnack inequality in Orlicz-Sobolev spaces
    Arriagad, Waldo
    Huentutripay, Jorge
    STUDIA MATHEMATICA, 2018, 243 (02) : 117 - 137
  • [49] On the Reverse Orlicz Blaschke-Santalo Inequality
    Ma, Tongyi
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2018, 15 (02)
  • [50] The affine Orlicz log-Minkowki inequality
    Zhao, Chang-jian
    CARPATHIAN JOURNAL OF MATHEMATICS, 2023, 39 (01) : 293 - 302