An asymmetric Orlicz centroid inequality for probability measures

被引:0
|
作者
HUANG QingZhong [1 ]
HE BinWu [1 ]
机构
[1] Department of Mathematics,Shanghai University
基金
中国国家自然科学基金;
关键词
M-addition; Orlicz centroid inequality; asymmetric Orlicz centroid bodies; asymmetric Lp centroid bodies;
D O I
暂无
中图分类号
O18 [几何、拓扑];
学科分类号
0701 ; 070101 ;
摘要
Using M-addition,an asymmetric Orlicz centroid inequality for absolutely continuous probability measures is established corresponding to Paouris and Pivovarov’s recent result on the symmetric case.As an application,we extend Haberl and Schuster’s asymmetric Lp centroid inequality from star bodies to compact sets.
引用
收藏
页码:1193 / 1202
页数:10
相关论文
共 50 条
  • [31] The Orlicz Brunn-Minkowski inequality
    Xi, Dongmeng
    Jin, Hailin
    Leng, Gangsong
    ADVANCES IN MATHEMATICS, 2014, 260 : 350 - 374
  • [32] Orlicz log-Minkowski inequality
    Zhao, Chang-Jian
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2021, 74
  • [33] GAUSSIAN MEASURES ON ORLICZ SPACES
    LAWNICZAK, AT
    STOCHASTIC ANALYSIS AND APPLICATIONS, 1985, 3 (03) : 349 - 361
  • [34] Orlicz mixed width measures
    Zhao, Chang-Jian
    PUBLICATIONES MATHEMATICAE DEBRECEN, 2024, 105 (1-2): : 1 - 10
  • [35] ON ORLICZ SPACES FOR A FAMILY OF MEASURES
    ROY, SK
    CHAKRABORTY, ND
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1990, 145 (02) : 485 - 503
  • [36] RISK MEASURES ON ORLICZ HEARTS
    Cheridito, Patrick
    Li, Tianhui
    MATHEMATICAL FINANCE, 2009, 19 (02) : 189 - 214
  • [37] A PROBABILITY INEQUALITY
    THORN, C
    TOMASZEWSKI, B
    AMERICAN MATHEMATICAL MONTHLY, 1985, 92 (04): : 293 - 293
  • [38] A PROBABILITY INEQUALITY
    CHANDRAS.R
    SIAM REVIEW, 1970, 12 (02) : 300 - &
  • [39] Duality and best constant for a Trudinger-Moser inequality involving probability measures
    Ricciardi, Tonia
    Suzuki, Takashi
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2014, 16 (07) : 1327 - 1348
  • [40] Perturbation analysis of the van den Berg Kesten inequality for determinantal probability measures
    Merkl, Franz
    Rolles, Silke W. W.
    ELECTRONIC JOURNAL OF PROBABILITY, 2013, 18 : 1 - 20