Orlicz-Aleksandrov-Fenchel Inequality or Orlicz Multiple Mixed Volumes

被引:9
|
作者
Zhao, Chang-Jian [1 ]
机构
[1] China Jiliang Univ, Dept Math, Hangzhou 310018, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
MINKOWSKI-FIREY THEORY; AFFINE; BODIES;
D O I
10.1155/2018/9752178
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Our main aim is to generalize the classical mixed volume V(K-1, . . . , K-n) and Aleksandrov-Fenchel inequality to the Orlicz space. In the framework of Orlicz-Brunn-Minkowski theory, we introduce a new affine geometric quantity by calculating the Orlicz first-order variation of the mixed volume and call it Orlicz multiple mixed volume of convex bodies K-1, . . . , K-n, and L-n, denoted by V-phi( K-1, . . . , K-n, L-n), which involves (n + 1) convex bodies in R-n. The fundamental notions and conclusions of the mixed volume and Aleksandrov-Fenchel inequality are extended to an Orlicz setting. The related concepts and inequalities of L-p-multiple mixed volume V-p(K-1, . . . , K-n, L-n) are also derived. The Orlicz-Aleksandrov-Fenchel inequality in special cases yields L-p-Aleksandrov-Fenchel inequality, Orlicz-Minkowski inequality, and Orlicz isoperimetric type inequalities. As application, a new Orlicz-Brunn-Minkowski inequality for Orlicz harmonic addition is established, which implies Orlicz-Brunn-Minkowski inequalities for the volumes and quermassintegrals.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] The Dual Orlicz-Aleksandrov-Fenchel Inequality
    Zhao, Chang-Jian
    MATHEMATICS, 2020, 8 (11) : 1 - 23
  • [2] Orlicz dual of log-Aleksandrov-Fenchel inequality
    Zhao, Chang-Jian
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2023, 52 (02): : 317 - 325
  • [3] Orlicz φ-对数Aleksandrov-Fenchel不等式
    赵长健
    数学年刊A辑(中文版), 2023, 44 (01) : 83 - 96
  • [4] The Orlicz Aleksandrov Problem for Orlicz Integral Curvature
    Feng, Yibin
    He, Binwu
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (07) : 5492 - 5519
  • [5] On the Dual Orlicz Mixed Volumes
    Jin, Hailin
    Yuan, Shufeng
    Leng, Gangsong
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2015, 36 (06) : 1019 - 1026
  • [6] On the dual Orlicz mixed volumes
    Hailin Jin
    Shufeng Yuan
    Gangsong Leng
    Chinese Annals of Mathematics, Series B, 2015, 36 : 1019 - 1026
  • [7] On the Dual Orlicz Mixed Volumes
    Hailin JIN
    Shufeng YUAN
    Gangsong LENG
    Chinese Annals of Mathematics(Series B), 2015, 36 (06) : 1019 - 1026
  • [8] Orlicz Dual Mixed Volumes
    Zhao, Chang-Jian
    RESULTS IN MATHEMATICS, 2015, 68 (1-2) : 93 - 104
  • [9] Orlicz Dual Mixed Volumes
    Chang-Jian Zhao
    Results in Mathematics, 2015, 68 : 93 - 104
  • [10] The Aleksandrov-Fenchel inequality for p-dual volumes
    Chiang-jian, Zhao
    Bencze, Mihaly
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2008, 51 (01): : 39 - 45