Orlicz-Aleksandrov-Fenchel Inequality or Orlicz Multiple Mixed Volumes

被引:9
|
作者
Zhao, Chang-Jian [1 ]
机构
[1] China Jiliang Univ, Dept Math, Hangzhou 310018, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
MINKOWSKI-FIREY THEORY; AFFINE; BODIES;
D O I
10.1155/2018/9752178
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Our main aim is to generalize the classical mixed volume V(K-1, . . . , K-n) and Aleksandrov-Fenchel inequality to the Orlicz space. In the framework of Orlicz-Brunn-Minkowski theory, we introduce a new affine geometric quantity by calculating the Orlicz first-order variation of the mixed volume and call it Orlicz multiple mixed volume of convex bodies K-1, . . . , K-n, and L-n, denoted by V-phi( K-1, . . . , K-n, L-n), which involves (n + 1) convex bodies in R-n. The fundamental notions and conclusions of the mixed volume and Aleksandrov-Fenchel inequality are extended to an Orlicz setting. The related concepts and inequalities of L-p-multiple mixed volume V-p(K-1, . . . , K-n, L-n) are also derived. The Orlicz-Aleksandrov-Fenchel inequality in special cases yields L-p-Aleksandrov-Fenchel inequality, Orlicz-Minkowski inequality, and Orlicz isoperimetric type inequalities. As application, a new Orlicz-Brunn-Minkowski inequality for Orlicz harmonic addition is established, which implies Orlicz-Brunn-Minkowski inequalities for the volumes and quermassintegrals.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Existence and uniqueness of solutions to the Orlicz Aleksandrov problem
    Feng, Yibin
    Hu, Shengnan
    Liu, Weiru
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2022, 61 (04)
  • [22] ON THE ALEKSANDROV-FENCHEL INEQUALITY INVOLVING ZONOIDS
    SCHNEIDER, R
    GEOMETRIAE DEDICATA, 1988, 27 (01) : 113 - 126
  • [23] THE AFFINE LOG-ALEKSANDROV-FENCHEL INEQUALITY
    Zhao, Chang-jian
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2023, 65 (01): : 67 - 77
  • [24] ON THE ALEKSANDROV-FENCHEL INEQUALITY AND THE STABILITY OF THE SPHERE
    ARNOLD, R
    MONATSHEFTE FUR MATHEMATIK, 1993, 115 (1-2): : 1 - 11
  • [25] The dual difference Aleksandrov-Fenchel inequality
    Zhao, Chang-Jian
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2017, 28 (02): : 362 - 371
  • [26] The Orlicz inequality for multilinear forms
    Nunez-Alarcon, Daniel
    Pellegrino, Daniel
    Serrano-Rodriguez, Diana
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 505 (02)
  • [27] THE ORLICZ AFFINE ISOPERIMETRIC INEQUALITY
    Chen, Fangwei
    Yang, Congli
    Zhou, Jiazu
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2014, 17 (03): : 1079 - 1089
  • [28] Orlicz mixed quermassintegrals
    Ge Xiong
    Du Zou
    Science China Mathematics, 2014, 57 : 2549 - 2562
  • [29] Orlicz mixed quermassintegrals
    Xiong Ge
    Zou Du
    SCIENCE CHINA-MATHEMATICS, 2014, 57 (12) : 2549 - 2562
  • [30] A stability estimate for the Aleksandrov–Fenchel inequality under regularity assumptions
    Yves Martinez-Maure
    Monatshefte für Mathematik, 2017, 182 : 65 - 76