Orlicz-Aleksandrov-Fenchel Inequality or Orlicz Multiple Mixed Volumes

被引:9
|
作者
Zhao, Chang-Jian [1 ]
机构
[1] China Jiliang Univ, Dept Math, Hangzhou 310018, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
MINKOWSKI-FIREY THEORY; AFFINE; BODIES;
D O I
10.1155/2018/9752178
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Our main aim is to generalize the classical mixed volume V(K-1, . . . , K-n) and Aleksandrov-Fenchel inequality to the Orlicz space. In the framework of Orlicz-Brunn-Minkowski theory, we introduce a new affine geometric quantity by calculating the Orlicz first-order variation of the mixed volume and call it Orlicz multiple mixed volume of convex bodies K-1, . . . , K-n, and L-n, denoted by V-phi( K-1, . . . , K-n, L-n), which involves (n + 1) convex bodies in R-n. The fundamental notions and conclusions of the mixed volume and Aleksandrov-Fenchel inequality are extended to an Orlicz setting. The related concepts and inequalities of L-p-multiple mixed volume V-p(K-1, . . . , K-n, L-n) are also derived. The Orlicz-Aleksandrov-Fenchel inequality in special cases yields L-p-Aleksandrov-Fenchel inequality, Orlicz-Minkowski inequality, and Orlicz isoperimetric type inequalities. As application, a new Orlicz-Brunn-Minkowski inequality for Orlicz harmonic addition is established, which implies Orlicz-Brunn-Minkowski inequalities for the volumes and quermassintegrals.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Orlicz-Aleksandrov体的不等式
    邢素丹
    应用数学与计算数学学报, 2017, 31 (01) : 107 - 113
  • [32] Twisted sums, Fenchel-Orlicz spaces and property (M)
    Androulakis, G
    Cazacu, CD
    Kalton, NJ
    HOUSTON JOURNAL OF MATHEMATICS, 1998, 24 (01): : 105 - 126
  • [33] HARDY INEQUALITY FOR ORLICZ LUXEMBOURG NORMS
    LOVE, ER
    ACTA MATHEMATICA HUNGARICA, 1990, 56 (3-4) : 247 - 253
  • [34] ORLICZ DUAL LOGARITHMIC MINKOWKI INEQUALITY
    Zhao, Chang-Jian
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2021, 24 (04): : 1031 - 1032
  • [35] The Orlicz Brunn-Minkowski inequality
    Xi, Dongmeng
    Jin, Hailin
    Leng, Gangsong
    ADVANCES IN MATHEMATICS, 2014, 260 : 350 - 374
  • [36] The Orlicz centroid inequality for star bodies
    Zhu, Guangxian
    ADVANCES IN APPLIED MATHEMATICS, 2012, 48 (02) : 432 - 445
  • [37] Orlicz log-Minkowski inequality
    Zhao, Chang-Jian
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2021, 74
  • [38] Inequalities for Orlicz Mixed Quermassintegrals
    Zhao, Chang-Jian
    JOURNAL OF CONVEX ANALYSIS, 2019, 26 (01) : 129 - 151
  • [39] Orlicz mixed affine quermassintegrals
    DeYi Li
    Du Zou
    Ge Xiong
    Science China Mathematics, 2015, 58 : 1715 - 1722
  • [40] Orlicz mixed width measures
    Zhao, Chang-Jian
    PUBLICATIONES MATHEMATICAE DEBRECEN, 2024, 105 (1-2): : 1 - 10