Estimating target population treatment effects in meta-analysis with individual participant-level data

被引:0
|
作者
Hong, Hwanhee [1 ]
Liu, Lu [1 ]
Stuart, Elizabeth A. [2 ]
机构
[1] Duke Univ, Sch Med, Dept Biostat & Bioinformat, Durham, NC USA
[2] Johns Hopkins Bloomberg Sch Publ Hlth, Dept Biostat, Baltimore, MD USA
关键词
Meta-analysis; generalizability; external validity; population effect; schizophrenia; PROPENSITY SCORE ESTIMATION; IMPUTATION; REGRESSION; DESIGN; TRIALS;
D O I
10.1177/09622802241307642
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Meta-analysis of randomized controlled trials is commonly used to evaluate treatments and inform policy decisions because it provides comprehensive summaries of all available evidence. However, meta-analyses are limited to draw population inference of treatment effects because they usually do not define target populations of interest specifically, and results of the individual randomized controlled trials in those meta-analyses may not generalize to the target populations. To leverage evidence from multiple randomized controlled trials in the generalizability context, we bridge the ideas from meta-analysis and causal inference. We integrate meta-analysis with causal inference approaches estimating target population average treatment effect. We evaluate the performance of the methods via simulation studies and apply the methods to generalize meta-analysis results from randomized controlled trials of treatments on schizophrenia to adults with schizophrenia who present to usual care settings in the United States. Our simulation results show that all methods perform comparably and well across different settings. The data analysis results show that the treatment effect in the target population is meaningful, although the effect size is smaller than the sample average treatment effect. We recommend applying multiple methods and comparing the results to ensure robustness, rather than relying on a single method.
引用
收藏
页码:355 / 368
页数:14
相关论文
共 50 条
  • [41] Nonlinear effects and effect modification at the participant-level in IPD meta-analysis part 1: analysis methods are often substandard
    Marlin, Nadine
    Godolphin, Peter J.
    Hooper, Richard L.
    Riley, Richard D.
    Rogozinska, Ewelina
    JOURNAL OF CLINICAL EPIDEMIOLOGY, 2023, 159 : 309 - 318
  • [42] Population Pharmacokinetic Properties of Piperaquine in Falciparum Malaria: An Individual Participant Data Meta-Analysis
    Hoglund, Richard M.
    Workman, Lesley
    Edstein, Michael D.
    Nguyen Xuan Thanh
    Nguyen Ngoc Quang
    Zongo, Issaka
    Ouedraogo, Jean Bosco
    Borrmann, Steffen
    Mwai, Leah
    Nsanzabana, Christian
    Price, Ric N.
    Dahal, Prabin
    Sambol, Nancy C.
    Parikh, Sunil
    Nosten, Francois
    Ashley, Elizabeth A.
    Phyo, Aung Pyae
    Lwin, Khin Maung
    McGready, Rose
    Day, Nicholas P. J.
    Guerin, Philippe J.
    White, Nicholas J.
    Barnes, Karen I.
    Tarning, Joel
    PLOS MEDICINE, 2017, 14 (01):
  • [43] Retinal microvascular calibre and risk of diabetes mellitus: a systematic review and participant-level meta-analysis
    Sabanayagam, Charumathi
    Lye, Weng Kit
    Klein, Ronald
    Klein, Barbara E. K.
    Cotch, Mary Frances
    Wang, Jie Jin
    Mitchell, Paul
    Shaw, Jonathan E.
    Selvin, Elizabeth
    Sharrett, A. Richey
    Wong, Tien Y.
    DIABETOLOGIA, 2015, 58 (11) : 2476 - 2485
  • [44] Type 2 diabetes, hepatic decompensation, and hepatocellular carcinoma in patients with non-alcoholic fatty liver disease: an individual participant-level data meta-analysis
    Huang, Daniel Q.
    Noureddin, Nabil
    Ajmera, Veeral
    Amangurbanova, Maral
    Bettencourt, Ricki
    Truong, Emily
    Gidener, Tolga
    Siddiqi, Harris
    Majzoub, Abdul M.
    Nayfeh, Tarek
    Tamaki, Nobuharu
    Izumi, Namiki
    Yoneda, Masato
    Nakajima, Atsushi
    Idilman, Ramazan
    Gumussoy, Mesut
    Oz, Digdem Kuru
    Erden, Ayse
    Allen, Alina M.
    Noureddin, Mazen
    Loomba, Rohit
    LANCET GASTROENTEROLOGY & HEPATOLOGY, 2023, 8 (09): : 829 - 836
  • [45] Knee osteoarthritis and time-to all-cause mortality in six community-based cohorts: an international meta-analysis of individual participant-level data
    Leyland, Kirsten M.
    Gates, Lucy S.
    Sanchez-Santos, Maria T.
    Nevitt, Michael C.
    Felson, David
    Jones, Graeme
    Jordan, Joanne M.
    Judge, Andrew
    Prieto-Alhambra, Dani
    Yoshimura, Noriko
    Newton, Julia L.
    Callahan, Leigh F.
    Cooper, Cyrus
    Batt, Mark E.
    Lin, Jianhao
    Liu, Qiang
    Cleveland, Rebecca J.
    Collins, Gary S.
    Arden, Nigel K.
    March, Lyn
    Hawker, Gillian
    Conaghan, Philip
    Kraus, Virginia Byers
    Guermazi, Ali
    Hunter, David
    Katz, Jeffrey N.
    McAlindon, Tim
    Neogi, Tuhina
    Simon, Lee
    Cross, Marita
    King, Lauren
    AGING CLINICAL AND EXPERIMENTAL RESEARCH, 2021, 33 (03) : 529 - 545
  • [46] Combining multiple imputation and meta-analysis with individual participant data
    Burgess, Stephen
    White, Ian R.
    Resche-Rigon, Matthieu
    Wood, Angela M.
    STATISTICS IN MEDICINE, 2013, 32 (26) : 4499 - 4514
  • [47] Adjusting for misclassification of an exposure in an individual participant data meta-analysis
    de Jong, Valentijn M. T.
    Campbell, Harlan
    Maxwell, Lauren
    Jaenisch, Thomas
    Gustafson, Paul
    Debray, Thomas P. A.
    RESEARCH SYNTHESIS METHODS, 2023, 14 (02) : 193 - 210
  • [48] Hydroxychloroquine in Lupus Pregnancy: A Meta-Analysis of Individual Participant Data
    Eudy, Amanda M.
    Petri, Michelle
    Fischer-Betz, Rebecca
    Mokbel, Abeer
    Nalli, Cecilia
    Andreoli, Laura
    Tincani, Angela
    Molad, Yair
    Balevic, Stephen
    Clowse, Megan E. B.
    ARTHRITIS & RHEUMATOLOGY, 2017, 69
  • [49] Testing moderation in network meta-analysis with individual participant data
    Dagne, Getachew A.
    Brown, C. Hendricks
    Howe, George
    Kellam, Sheppard G.
    Liu, Lei
    STATISTICS IN MEDICINE, 2016, 35 (15) : 2485 - 2502
  • [50] Knee osteoarthritis and time-to all-cause mortality in six community-based cohorts: an international meta-analysis of individual participant-level data
    Kirsten M. Leyland
    Lucy S. Gates
    Maria T. Sanchez-Santos
    Michael C. Nevitt
    David Felson
    Graeme Jones
    Joanne M. Jordan
    Andrew Judge
    Dani Prieto-Alhambra
    Noriko Yoshimura
    Julia L. Newton
    Leigh F. Callahan
    Cyrus Cooper
    Mark E. Batt
    Jianhao Lin
    Qiang Liu
    Rebecca J. Cleveland
    Gary S. Collins
    Nigel K. Arden
    Aging Clinical and Experimental Research, 2021, 33 : 529 - 545