Estimating target population treatment effects in meta-analysis with individual participant-level data

被引:0
|
作者
Hong, Hwanhee [1 ]
Liu, Lu [1 ]
Stuart, Elizabeth A. [2 ]
机构
[1] Duke Univ, Sch Med, Dept Biostat & Bioinformat, Durham, NC USA
[2] Johns Hopkins Bloomberg Sch Publ Hlth, Dept Biostat, Baltimore, MD USA
关键词
Meta-analysis; generalizability; external validity; population effect; schizophrenia; PROPENSITY SCORE ESTIMATION; IMPUTATION; REGRESSION; DESIGN; TRIALS;
D O I
10.1177/09622802241307642
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Meta-analysis of randomized controlled trials is commonly used to evaluate treatments and inform policy decisions because it provides comprehensive summaries of all available evidence. However, meta-analyses are limited to draw population inference of treatment effects because they usually do not define target populations of interest specifically, and results of the individual randomized controlled trials in those meta-analyses may not generalize to the target populations. To leverage evidence from multiple randomized controlled trials in the generalizability context, we bridge the ideas from meta-analysis and causal inference. We integrate meta-analysis with causal inference approaches estimating target population average treatment effect. We evaluate the performance of the methods via simulation studies and apply the methods to generalize meta-analysis results from randomized controlled trials of treatments on schizophrenia to adults with schizophrenia who present to usual care settings in the United States. Our simulation results show that all methods perform comparably and well across different settings. The data analysis results show that the treatment effect in the target population is meaningful, although the effect size is smaller than the sample average treatment effect. We recommend applying multiple methods and comparing the results to ensure robustness, rather than relying on a single method.
引用
收藏
页码:355 / 368
页数:14
相关论文
共 50 条
  • [21] Predictors of the effects of treatment for shoulder pain: protocol of an individual participant data meta-analysis
    Danielle A. van der Windt
    Danielle L. Burke
    Opeyemi Babatunde
    Miriam Hattle
    Cliona McRobert
    Chris Littlewood
    Gwenllian Wynne-Jones
    Linda Chesterton
    Geert J. M. G. van der Heijden
    Jan C. Winters
    Daniel I. Rhon
    Kim Bennell
    Edward Roddy
    Carl Heneghan
    David Beard
    Jonathan L. Rees
    Richard D. Riley
    Diagnostic and Prognostic Research, 3 (1)
  • [22] Individual Participant Data Meta-Analysis Explained
    Kelley, George A.
    JOURNAL OF PEDIATRICS, 2019, 207 : 265 - 266
  • [23] An Introduction to Individual Participant Data Meta-analysis
    Veroniki, Areti Angeliki
    Seitidis, Georgios
    Tsivgoulis, Georgios
    Katsanos, Aristeidis H.
    Mavridis, Dimitris
    NEUROLOGY, 2023, 100 (23) : 1102 - 1110
  • [24] Ultrasound guidance for transfemoral access in coronary procedures: an individual participant-level data meta-analysis from the femoral ultrasound trialist collaboration
    d'Entremont, Marc -Andre
    Alrashidi, Sulaiman
    Seto, Arnold H.
    Nguyen, Phong
    Marquis-Gravel, Guillaume
    Abu-Fadel, Mazen S.
    Juergens, Craig
    Tessier, Pierre
    Lemaire-Paquette, Samuel
    Heenan, Laura
    Skuriat, Elizabeth
    Tyrwhitt, Jessica
    Couture, etienne L.
    Berube, Simon
    Jolly, Sanjit S.
    EUROINTERVENTION, 2024, 20 (01) : 66 - 74
  • [25] Antihypertensive treatment and risk of cancer: an individual participant data meta-analysis
    Copland, Emma
    Canoy, Dexter
    Nazarzadeh, Milad
    Bidel, Zeinab
    Ramakrishnan, Rema
    Woodward, Mark
    Chalmers, John
    Teo, Koon K.
    Pepine, Carl J.
    Davis, Barry R.
    Kjeldsen, Sverre
    Sundstrom, Johan
    Rahimi, Kazem
    LANCET ONCOLOGY, 2021, 22 (04): : 558 - 570
  • [26] Blood pressure-lowering treatment for prevention of major cardiovascular diseases in people with and without type 2 diabetes: an individual participant-level data meta-analysis
    Nazarzadeh, Milad
    Bidel, Zeinab
    Canoy, Dexter
    Copland, Emma
    Bennett, Derrick A.
    Dehghan, Abbas
    Smith, George Davey
    Holman, Rury R.
    Woodward, Mark
    Gupta, Ajay
    Adler, Amanda I.
    Wamil, Malgorzata
    Sattar, Naveed
    Cushman, William C.
    McManus, Richard J.
    Teo, Koon
    Davis, Barry R.
    Chalmers, John
    Pepine, Carl J.
    Rahimi, Kazem
    LANCET DIABETES & ENDOCRINOLOGY, 2022, 10 (09): : 645 - 654
  • [27] Observational study and participant-level meta-analysis on antihypertensive drug treatment- related cardiovascular risk
    Asayama, Kei
    HYPERTENSION RESEARCH, 2017, 40 (10) : 856 - 860
  • [28] Estimating additive interaction in 2-stage individual participant data meta-analysis
    Basten, Maartje
    van Tuijl, Lonneke A.
    Pan, Kuan-Yu
    Hoogendoorn, Adriaan W.
    Lamers, Femke
    Ranchor, Adelita, V
    Dekker, Joost
    Frank, Philipp
    Galenkamp, Henrike
    Knol, Mirjam J.
    Noisel, Nolwenn
    Payette, Yves
    Sund, Erik R.
    Zwinderman, Aeilko H.
    Portengen, Lutzen
    Geerlings, Mirjam, I
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 2025,
  • [29] Observational study and participant-level meta-analysis on antihypertensive drug treatment-related cardiovascular risk
    Kei Asayama
    Hypertension Research, 2017, 40 : 856 - 860
  • [30] Predicting personalised absolute treatment effects in individual participant data meta-analysis: An introduction to splines
    Belias, Michail
    Rovers, Maroeska M.
    Hoogland, Jeroen
    Reitsma, Johannes B.
    Debray, Thomas P. A.
    IntHout, Joanna
    RESEARCH SYNTHESIS METHODS, 2022, 13 (02) : 255 - 283