Estimating target population treatment effects in meta-analysis with individual participant-level data

被引:0
|
作者
Hong, Hwanhee [1 ]
Liu, Lu [1 ]
Stuart, Elizabeth A. [2 ]
机构
[1] Duke Univ, Sch Med, Dept Biostat & Bioinformat, Durham, NC USA
[2] Johns Hopkins Bloomberg Sch Publ Hlth, Dept Biostat, Baltimore, MD USA
关键词
Meta-analysis; generalizability; external validity; population effect; schizophrenia; PROPENSITY SCORE ESTIMATION; IMPUTATION; REGRESSION; DESIGN; TRIALS;
D O I
10.1177/09622802241307642
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Meta-analysis of randomized controlled trials is commonly used to evaluate treatments and inform policy decisions because it provides comprehensive summaries of all available evidence. However, meta-analyses are limited to draw population inference of treatment effects because they usually do not define target populations of interest specifically, and results of the individual randomized controlled trials in those meta-analyses may not generalize to the target populations. To leverage evidence from multiple randomized controlled trials in the generalizability context, we bridge the ideas from meta-analysis and causal inference. We integrate meta-analysis with causal inference approaches estimating target population average treatment effect. We evaluate the performance of the methods via simulation studies and apply the methods to generalize meta-analysis results from randomized controlled trials of treatments on schizophrenia to adults with schizophrenia who present to usual care settings in the United States. Our simulation results show that all methods perform comparably and well across different settings. The data analysis results show that the treatment effect in the target population is meaningful, although the effect size is smaller than the sample average treatment effect. We recommend applying multiple methods and comparing the results to ensure robustness, rather than relying on a single method.
引用
收藏
页码:355 / 368
页数:14
相关论文
共 50 条
  • [31] Genders of patients and clinicians and their effect on shared decision making: a participant-level meta-analysis
    Kirk D Wyatt
    Megan E Branda
    Jonathan W Inselman
    Henry H Ting
    Erik P Hess
    Victor M Montori
    Annie LeBlanc
    BMC Medical Informatics and Decision Making, 14
  • [32] Meta-analysis for individual participant data with a continuous A case
    Darssan, Darsy
    Mishra, Gita D.
    Greenwood, Darren C.
    Sandin, Sven
    Brunner, Eric J.
    Crawford, Sybil L.
    El Khoudary, Samar R.
    Brooks, Maria Mori
    Gold, Ellen B.
    Simonsen, Mette Kildevaeld
    Chung, Hsin-Fang
    Weiderpass, Elisabete
    Dobson, Annette J.
    JOURNAL OF CLINICAL EPIDEMIOLOGY, 2021, 140 : 79 - 92
  • [33] Multivariate meta-analysis using individual participant data
    Riley, R. D.
    Price, M. J.
    Jackson, D.
    Wardle, M.
    Gueyffier, F.
    Wang, J.
    Staessen, J. A.
    White, I. R.
    RESEARCH SYNTHESIS METHODS, 2015, 6 (02) : 157 - 174
  • [34] Adjunctive vitamin D in tuberculosis treatment: meta-analysis of individual participant data
    Jolliffe, David A.
    Ganmaa, Davaasambuu
    Wejse, Christian
    Raqib, Rubhana
    Haq, M. Ahsanul
    Salahuddin, Nawal
    Daley, Peter K.
    Ralph, Anna P.
    Ziegler, Thomas R.
    Martineau, Adrian R.
    EUROPEAN RESPIRATORY JOURNAL, 2019, 53 (03)
  • [35] Pulmonary arterial hypertension treatment: an individual participant data network meta-analysis
    Moutchia, Jude
    McClelland, Robyn L.
    Al-Naamani, Nadine
    Appleby, Dina H.
    Holmes, John H.
    Minhas, Jasleen
    Mazurek, Jeremy A.
    Palevsky, Harold, I
    Ventetuolo, Corey E.
    Kawut, Steven M.
    EUROPEAN HEART JOURNAL, 2024, 45 (21) : 1937 - 1952
  • [36] Genders of patients and clinicians and their effect on shared decision making: a participant-level meta-analysis
    Wyatt, Kirk D.
    Branda, Megan E.
    Inselman, Jonathan W.
    Ting, Henry H.
    Hess, Erik P.
    Montori, Victor M.
    LeBlanc, Annie
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2014, 14
  • [37] Nonlinear effects and effect modification at the participant-level in IPD meta-analysis part 2: methodological guidance is available
    Marlin, Nadine
    Godolphin, Peter J.
    Hooper, Richard L.
    Riley, Richard D.
    Rogozinska, Ewelina
    JOURNAL OF CLINICAL EPIDEMIOLOGY, 2023, 159 : 319 - 329
  • [38] Individual participant data meta-analysis with mixed-effects transformation models
    Tamasi, Balint
    Crowther, Michael
    Puhan, Milo Alan
    Steyerberg, Ewout W.
    Hothorn, Torsten
    BIOSTATISTICS, 2022, 23 (04) : 1083 - 1098
  • [39] A Guide to Estimating the Reference Range From a Meta-Analysis Using Aggregate or Individual Participant Data
    Siegel, Lianne
    Murad, M. Hassan
    Riley, Richard D.
    Bazerbachi, Fateh
    Wang, Zhen
    Chu, Haitao
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 2022, 191 (05) : 948 - 956
  • [40] Heterogeneity of Treatment Effects by Predicted Risk in Pulmonary Arterial Hypertension: An Individual Participant Data Meta-analysis
    Pan, H.
    McClelland, R.
    Moutchia, J.
    Appleby, D.
    Fritz, J. S.
    Holmes, J.
    Minhas, J.
    Palevsky, H. I.
    Urbanowicz, R.
    Kawut, S. M.
    Al-Naamani, N.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2023, 207