Adjusting for misclassification of an exposure in an individual participant data meta-analysis

被引:1
|
作者
de Jong, Valentijn M. T. [1 ,2 ,3 ]
Campbell, Harlan [4 ]
Maxwell, Lauren [5 ]
Jaenisch, Thomas [5 ,6 ,7 ]
Gustafson, Paul [4 ]
Debray, Thomas P. A. [1 ,2 ]
机构
[1] Univ Utrecht, Univ Med Ctr Utrecht, Julius Ctr Hlth Sci & Primary Care, Utrecht, Netherlands
[2] Univ Utrecht, Univ Med Ctr Utrecht, Cochrane Netherlands, Utrecht, Netherlands
[3] European Med Agcy, Data Analyt & Methods Task Force, Amsterdam, Netherlands
[4] Univ British Columbia, Dept Stat, Vancouver, BC, Canada
[5] Heidelberg Univ, Heidelberg Med Sch, Heidelberg Inst Global Hlth, Heidelberg, Germany
[6] Colorado Sch Publ Hlth, Ctr Global Hlth, Aurora, CO USA
[7] Colorado Sch Publ Hlth, Dept Epidemiol, Aurora, CO USA
基金
加拿大健康研究院; 欧盟地平线“2020”;
关键词
individual participant data; measurement error; meta-analysis; misclassification; MEASUREMENT-ERROR; NONDIFFERENTIAL MISCLASSIFICATION; DIFFERENTIAL MISCLASSIFICATION; LOGISTIC-REGRESSION; MULTIPLE-IMPUTATION; BIAS; RISK;
D O I
10.1002/jrsm.1606
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
A common problem in the analysis of multiple data sources, including individual participant data meta-analysis (IPD-MA), is the misclassification of binary variables. Misclassification may lead to biased estimators of model parameters, even when the misclassification is entirely random. We aimed to develop statistical methods that facilitate unbiased estimation of adjusted and unadjusted exposure-outcome associations and between-study heterogeneity in IPD-MA, where the extent and nature of exposure misclassification may vary across studies. We present Bayesian methods that allow misclassification of binary exposure variables to depend on study- and participant-level characteristics. In an example of the differential diagnosis of dengue using two variables, where the gold standard measurement for the exposure variable was unavailable for some studies which only measured a surrogate prone to misclassification, our methods yielded more accurate estimates than analyses naive with regard to misclassification or based on gold standard measurements alone. In a simulation study, the evaluated misclassification model yielded valid estimates of the exposure-outcome association, and was more accurate than analyses restricted to gold standard measurements. Our proposed framework can appropriately account for the presence of binary exposure misclassification in IPD-MA. It requires that some studies supply IPD for the surrogate and gold standard exposure, and allows misclassification to follow a random effects distribution across studies conditional on observed covariates (and outcome). The proposed methods are most beneficial when few large studies that measured the gold standard are available, and when misclassification is frequent.
引用
收藏
页码:193 / 210
页数:18
相关论文
共 50 条
  • [1] Individual participant data in meta-analysis
    Spineli, Loukia M.
    Pandis, Nikolaos
    [J]. AMERICAN JOURNAL OF ORTHODONTICS AND DENTOFACIAL ORTHOPEDICS, 2021, 159 (06) : 868 - 870
  • [2] Individual Participant Data Meta-Analysis Explained
    Kelley, George A.
    [J]. JOURNAL OF PEDIATRICS, 2019, 207 : 265 - 266
  • [3] An Introduction to Individual Participant Data Meta-analysis
    Veroniki, Areti Angeliki
    Seitidis, Georgios
    Tsivgoulis, Georgios
    Katsanos, Aristeidis H.
    Mavridis, Dimitris
    [J]. NEUROLOGY, 2023, 100 (23) : 1102 - 1110
  • [4] Meta-analysis for individual participant data with a continuous A case
    Darssan, Darsy
    Mishra, Gita D.
    Greenwood, Darren C.
    Sandin, Sven
    Brunner, Eric J.
    Crawford, Sybil L.
    El Khoudary, Samar R.
    Brooks, Maria Mori
    Gold, Ellen B.
    Simonsen, Mette Kildevaeld
    Chung, Hsin-Fang
    Weiderpass, Elisabete
    Dobson, Annette J.
    [J]. JOURNAL OF CLINICAL EPIDEMIOLOGY, 2021, 140 : 79 - 92
  • [5] Multivariate meta-analysis using individual participant data
    Riley, R. D.
    Price, M. J.
    Jackson, D.
    Wardle, M.
    Gueyffier, F.
    Wang, J.
    Staessen, J. A.
    White, I. R.
    [J]. RESEARCH SYNTHESIS METHODS, 2015, 6 (02) : 157 - 174
  • [6] Combining multiple imputation and meta-analysis with individual participant data
    Burgess, Stephen
    White, Ian R.
    Resche-Rigon, Matthieu
    Wood, Angela M.
    [J]. STATISTICS IN MEDICINE, 2013, 32 (26) : 4499 - 4514
  • [7] Hydroxychloroquine in Lupus Pregnancy: A Meta-Analysis of Individual Participant Data
    Eudy, Amanda M.
    Petri, Michelle
    Fischer-Betz, Rebecca
    Mokbel, Abeer
    Nalli, Cecilia
    Andreoli, Laura
    Tincani, Angela
    Molad, Yair
    Balevic, Stephen
    Clowse, Megan E. B.
    [J]. ARTHRITIS & RHEUMATOLOGY, 2017, 69
  • [8] Testing moderation in network meta-analysis with individual participant data
    Dagne, Getachew A.
    Brown, C. Hendricks
    Howe, George
    Kellam, Sheppard G.
    Liu, Lei
    [J]. STATISTICS IN MEDICINE, 2016, 35 (15) : 2485 - 2502
  • [9] Meta-analysis of individual participant data: rationale, conduct, and reporting
    Riley, Richard D.
    Lambert, Paul C.
    Abo-Zaid, Ghada
    [J]. BMJ-BRITISH MEDICAL JOURNAL, 2010, 340 : 521 - 525
  • [10] Research Note: Individual participant data (IPD) meta-analysis
    Hayden, Jill A.
    Riley, Richard D.
    [J]. JOURNAL OF PHYSIOTHERAPY, 2021, 67 (03) : 224 - 227