Bayesian composite Lp-quantile regression

被引:0
|
作者
Arnroth, Lukas [1 ]
机构
[1] Uppsala Univ, Dept Stat, Uppsala, Sweden
关键词
Skewed exponential power distribution; L-P-quantile regression; Markov chain Monte Carlo; RISK MEASURES; SELECTION;
D O I
10.1007/s00184-024-00950-8
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
L-P-quantiles are a class of generalized quantiles defined as minimizers of an asymmetric power function. They include both quantiles, P = 1, and expectiles, P = 2, as special cases. This paper studies composite L-P-quantile regression, simultaneously extending single L-P-quantile regression and composite quantile regression. A Bayesian approach is considered, where a novel parameterization of the skewed exponential power distribution is utilized. Further, a Laplace prior on the regression coefficients allows for variable selection. Through a Monte Carlo study and applications to empirical data, the proposed method is shown to outperform Bayesian composite quantile regression in most aspects.
引用
收藏
页码:83 / 97
页数:15
相关论文
共 50 条
  • [31] Bayesian semiparametric additive quantile regression
    Waldmann, Elisabeth
    Kneib, Thomas
    Yue, Yu Ryan
    Lang, Stefan
    Flexeder, Claudia
    STATISTICAL MODELLING, 2013, 13 (03) : 223 - 252
  • [32] Horseshoe prior Bayesian quantile regression
    Kohns, David
    Szendrei, Tibor
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2024, 73 (01) : 193 - 220
  • [33] Bayesian Semiparametric Modelling in Quantile Regression
    Kottas, Athanasios
    Krnjajic, Milovan
    SCANDINAVIAN JOURNAL OF STATISTICS, 2009, 36 (02) : 297 - 319
  • [34] Bayesian joint-quantile regression
    Yingying Hu
    Huixia Judy Wang
    Xuming He
    Jianhua Guo
    Computational Statistics, 2021, 36 : 2033 - 2053
  • [35] Bayesian Quantile Regression for Ordinal Models
    Rahman, Mohammad Arshad
    BAYESIAN ANALYSIS, 2016, 11 (01): : 1 - 24
  • [36] Bayesian quantile regression for streaming data
    Xie, Xiaoyue
    Tian, Zixuan
    Shi, Jian
    AIMS MATHEMATICS, 2024, 9 (09): : 26114 - 26138
  • [37] Bayesian variable selection in quantile regression
    Yu, Keming
    Chen, Cathy W. S.
    Reed, Craig
    Dunson, David B.
    STATISTICS AND ITS INTERFACE, 2013, 6 (02) : 261 - 274
  • [38] Bayesian adaptive Lasso quantile regression
    Alhamzawi, Rahim
    Yu, Keming
    Benoit, Dries F.
    STATISTICAL MODELLING, 2012, 12 (03) : 279 - 297
  • [39] A BAYESIAN APPROACH TO ENVELOPE QUANTILE REGRESSION
    Lee, Minji
    Chakraborty, Saptarshi
    Su, Zhihua
    STATISTICA SINICA, 2022, 32 : 2339 - 2357
  • [40] Bayesian lasso binary quantile regression
    Benoit, Dries F.
    Alhamzawi, Rahim
    Yu, Keming
    COMPUTATIONAL STATISTICS, 2013, 28 (06) : 2861 - 2873