Skewed exponential power distribution;
L-P-quantile regression;
Markov chain Monte Carlo;
RISK MEASURES;
SELECTION;
D O I:
10.1007/s00184-024-00950-8
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
L-P-quantiles are a class of generalized quantiles defined as minimizers of an asymmetric power function. They include both quantiles, P = 1, and expectiles, P = 2, as special cases. This paper studies composite L-P-quantile regression, simultaneously extending single L-P-quantile regression and composite quantile regression. A Bayesian approach is considered, where a novel parameterization of the skewed exponential power distribution is utilized. Further, a Laplace prior on the regression coefficients allows for variable selection. Through a Monte Carlo study and applications to empirical data, the proposed method is shown to outperform Bayesian composite quantile regression in most aspects.
机构:
Univ Calif Santa Cruz, Baskin Sch Engn, Dept Appl Math & Stat, Santa Cruz, CA 95064 USAUniv Calif Santa Cruz, Baskin Sch Engn, Dept Appl Math & Stat, Santa Cruz, CA 95064 USA
Kottas, Athanasios
Krnjajic, Milovan
论文数: 0引用数: 0
h-index: 0
机构:
Lawrence Livermore Natl Lab, Livermore, CA USAUniv Calif Santa Cruz, Baskin Sch Engn, Dept Appl Math & Stat, Santa Cruz, CA 95064 USA
机构:
Air Force Engn Univ, Equipment Management & UAV Engn, Xian, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, Beijing, Peoples R China
Xie, Xiaoyue
Tian, Zixuan
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Acad Math & Syst Sci, Beijing, Peoples R China
Univ Chinese Acad Sci, Sch Math Sci, Beijing, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, Beijing, Peoples R China
Tian, Zixuan
Shi, Jian
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Acad Math & Syst Sci, Beijing, Peoples R China
Univ Chinese Acad Sci, Sch Math Sci, Beijing, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, Beijing, Peoples R China