Horseshoe prior Bayesian quantile regression

被引:0
|
作者
Kohns, David [1 ,3 ]
Szendrei, Tibor [2 ]
机构
[1] Aalto Univ, Dept Comp Sci, Espoo, Finland
[2] Heriot Watt Univ, Dept Econ, Edinburgh, Scotland
[3] Aalto Univ, Dept Comp Sci, Konemiehentie 2, Espoo, Finland
关键词
global-local prior; growth-at-risk; Monte Carlo; quantile regression; sampling method; VARIABLE SELECTION; LARGE NUMBER; SHRINKAGE; RISK; FORECASTS; SAMPLER; LASSO;
D O I
10.1093/jrsssc/qlad091
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper extends the horseshoe prior to Bayesian quantile regression and provides a fast sampling algorithm for computation in high dimensions. Compared to alternative shrinkage priors, our method yields better performance in coefficient bias and forecast error, especially in sparse designs and in estimating extreme quantiles. In a high-dimensional growth-at-risk forecasting application, we forecast tail risks and complete forecast densities using a database covering over 200 macroeconomic variables. Quantile specific and density calibration score functions show that our method provides competitive performance compared to competing Bayesian quantile regression priors, especially at short- and medium-run horizons.
引用
收藏
页码:193 / 220
页数:28
相关论文
共 50 条
  • [1] Power Prior Elicitation in Bayesian Quantile Regression
    Alhamzawi, Rahim
    Yu, Keming
    [J]. JOURNAL OF PROBABILITY AND STATISTICS, 2011, 2011
  • [2] Bayesian variable selection and estimation in quantile regression using a quantile-specific prior
    Mai Dao
    Min Wang
    Souparno Ghosh
    Keying Ye
    [J]. Computational Statistics, 2022, 37 : 1339 - 1368
  • [3] Bayesian variable selection and estimation in quantile regression using a quantile-specific prior
    Dao, Mai
    Wang, Min
    Ghosh, Souparno
    Ye, Keying
    [J]. COMPUTATIONAL STATISTICS, 2022, 37 (03) : 1339 - 1368
  • [4] Bayesian quantile regression
    Yu, KM
    Moyeed, RA
    [J]. STATISTICS & PROBABILITY LETTERS, 2001, 54 (04) : 437 - 447
  • [5] Bayesian multivariate quantile regression using Dependent Dirichlet Process prior
    Bhattacharya, Indrabati
    Ghosal, Subhashis
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2021, 185
  • [6] Bayesian quantile regression using random B-spline series prior
    Das, Priyam
    Ghosal, Subhashis
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2017, 109 : 121 - 143
  • [7] Bayesian bivariate quantile regression
    Waldmann, Elisabeth
    Kneib, Thomas
    [J]. STATISTICAL MODELLING, 2015, 15 (04) : 326 - 344
  • [8] Bayesian bridge quantile regression
    Alhamzawi, Rahim
    Algamal, Zakariya Yahya
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2019, 48 (03) : 944 - 956
  • [9] Bayesian Regularized Quantile Regression
    Li, Qing
    Xi, Ruibin
    Lin, Nan
    [J]. BAYESIAN ANALYSIS, 2010, 5 (03): : 533 - 556
  • [10] Regularized Bayesian quantile regression
    El Adlouni, Salaheddine
    Salaou, Garba
    St-Hilaire, Andre
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2018, 47 (01) : 277 - 293