global-local prior;
growth-at-risk;
Monte Carlo;
quantile regression;
sampling method;
VARIABLE SELECTION;
LARGE NUMBER;
SHRINKAGE;
RISK;
FORECASTS;
SAMPLER;
LASSO;
D O I:
10.1093/jrsssc/qlad091
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
This paper extends the horseshoe prior to Bayesian quantile regression and provides a fast sampling algorithm for computation in high dimensions. Compared to alternative shrinkage priors, our method yields better performance in coefficient bias and forecast error, especially in sparse designs and in estimating extreme quantiles. In a high-dimensional growth-at-risk forecasting application, we forecast tail risks and complete forecast densities using a database covering over 200 macroeconomic variables. Quantile specific and density calibration score functions show that our method provides competitive performance compared to competing Bayesian quantile regression priors, especially at short- and medium-run horizons.
机构:
Univ Liverpool, Inst Infect & Global Hlth, Liverpool L69 3BX, Merseyside, EnglandUniv Liverpool, Inst Infect & Global Hlth, Liverpool L69 3BX, Merseyside, England
Waldmann, Elisabeth
Kneib, Thomas
论文数: 0引用数: 0
h-index: 0
机构:
Univ Gottingen, Chair Stat & Econometry, Gottingen, GermanyUniv Liverpool, Inst Infect & Global Hlth, Liverpool L69 3BX, Merseyside, England
机构:
Univ Moncton, Math & Stat Dept, 18 Antonine Maillet Ave, Moncton, NB E1A 3E9, CanadaUniv Moncton, Math & Stat Dept, 18 Antonine Maillet Ave, Moncton, NB E1A 3E9, Canada
Salaou, Garba
St-Hilaire, Andre
论文数: 0引用数: 0
h-index: 0
机构:
INRS ETE, Ctr Eau Terre Environm, Quebec City, PQ, CanadaUniv Moncton, Math & Stat Dept, 18 Antonine Maillet Ave, Moncton, NB E1A 3E9, Canada