Bayesian composite Lp-quantile regression

被引:0
|
作者
Arnroth, Lukas [1 ]
机构
[1] Uppsala Univ, Dept Stat, Uppsala, Sweden
关键词
Skewed exponential power distribution; L-P-quantile regression; Markov chain Monte Carlo; RISK MEASURES; SELECTION;
D O I
10.1007/s00184-024-00950-8
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
L-P-quantiles are a class of generalized quantiles defined as minimizers of an asymmetric power function. They include both quantiles, P = 1, and expectiles, P = 2, as special cases. This paper studies composite L-P-quantile regression, simultaneously extending single L-P-quantile regression and composite quantile regression. A Bayesian approach is considered, where a novel parameterization of the skewed exponential power distribution is utilized. Further, a Laplace prior on the regression coefficients allows for variable selection. Through a Monte Carlo study and applications to empirical data, the proposed method is shown to outperform Bayesian composite quantile regression in most aspects.
引用
收藏
页码:83 / 97
页数:15
相关论文
共 50 条
  • [41] Bayesian Endogenous Tobit Quantile Regression
    Kobayashi, Genya
    BAYESIAN ANALYSIS, 2017, 12 (01): : 161 - 191
  • [42] Composite smoothed quantile regression
    Yan, Yibo
    Wang, Xiaozhou
    Zhang, Riquan
    STAT, 2023, 12 (01):
  • [43] Composite kernel quantile regression
    Bang, Sungwan
    Eo, Soo-Heang
    Jhun, Myoungshic
    Cho, Hyung Jun
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (03) : 2228 - 2240
  • [44] Bootstrapping Composite Quantile Regression
    Seo, Kangmin
    Bang, Sungwan
    Jhun, Myoungshic
    KOREAN JOURNAL OF APPLIED STATISTICS, 2012, 25 (02) : 341 - 350
  • [45] Local Composite Quantile Regression for Regression Discontinuity
    Huang, Xiao
    Zhan, Zhaoguo
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2022, 40 (04) : 1863 - 1875
  • [46] Bayesian relative composite quantile regression with ordinal longitudinal data and some case studies
    Tian, Yu-Zhu
    Wu, Chun-Ho
    Tang, Man-Lai
    Tian, Mao-Zai
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2024, 94 (10) : 2320 - 2345
  • [47] Advanced algorithms for penalized quantile and composite quantile regression
    Pietrosanu, Matthew
    Gao, Jueyu
    Kong, Linglong
    Jiang, Bei
    Niu, Di
    COMPUTATIONAL STATISTICS, 2021, 36 (01) : 333 - 346
  • [48] Advanced algorithms for penalized quantile and composite quantile regression
    Matthew Pietrosanu
    Jueyu Gao
    Linglong Kong
    Bei Jiang
    Di Niu
    Computational Statistics, 2021, 36 : 333 - 346
  • [49] Estimation of value-at-risk by Lp quantile regression
    Sun, Peng
    Lin, Fuming
    Xu, Haiyang
    Yu, Kaizhi
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2025, 77 (01) : 25 - 59
  • [50] Quantile Regression Neural Networks: A Bayesian Approach
    Jantre, S. R.
    Bhattacharya, S.
    Maiti, T.
    JOURNAL OF STATISTICAL THEORY AND PRACTICE, 2021, 15 (03)