Probabilistic poly-Bernoulli numbers

被引:1
|
作者
Liu, Wencong [1 ,2 ]
Ma, Yuankui [2 ]
Kim, Taekyun [2 ,3 ]
Kim, Dae San [4 ]
机构
[1] Northwest Univ, Sch Math, Xian, Shaanxi, Peoples R China
[2] Xian Technol Univ, Sch Sci, Xian, Shaanxi, Peoples R China
[3] Kwangwoon Univ, Dept Math, Seoul 139701, South Korea
[4] Sogang Univ, Dept Math, Seoul, South Korea
关键词
Modified probabilistic Bernoulli polynomials associated with <italic>Y</italic>; proba-bilistic poly-Bernoulli numbers associated with <italic>Y</italic>; probabilistic numbers associated with <italic>Y</italic>; DEGENERATE BERNOULLI; STIRLING NUMBERS; POLYNOMIALS;
D O I
10.1080/13873954.2024.2427306
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Assume that is Y a random variable whose moment generating function exists in a neighbourhood of the origin. The aim of this paper is to study probabilistic poly-Bernoulli numbers associated with Y, as probabilistic extensions of poly-Bernoulli numbers. We derive explicit expressions, some related identities and a symmetric relation for those numbers. We also investigate explicit expressions for the modified probabilisitc Bernoulli numbers associated with Y, which are slightly different from probabilisitic Bernoulli numbers associated with Y. As special cases of Y, we treat the Poisson, gamma and Bernoulli random variables.
引用
收藏
页码:840 / 856
页数:17
相关论文
共 50 条
  • [31] On generalized poly-Bernoulli numbers and related L-functions
    Sasaki, Yoshitaka
    JOURNAL OF NUMBER THEORY, 2012, 132 (01) : 156 - 170
  • [32] Degenerate Hermite poly-Bernoulli numbers and polynomials with q-parameter
    Khan, Waseem A.
    Khan, Idrees A.
    Ali, Musharraf
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2020, 65 (01): : 3 - 15
  • [33] Generalized poly-Cauchy and poly-Bernoulli numbers by using incomplete r-Stirling numbers
    Komatsu, Takao
    Ramirez, Jose L.
    AEQUATIONES MATHEMATICAE, 2017, 91 (06) : 1055 - 1071
  • [34] Multiple zeta values, poly-Bernoulli numbers, and related zeta functions
    Arakawa, T
    Kaneko, M
    NAGOYA MATHEMATICAL JOURNAL, 1999, 153 : 189 - 209
  • [35] ON MULTI POLY-BERNOULLI POLYNOMIALS
    Corcino, Cristina B.
    Corcino, Roberto B.
    Komatsu, Takao
    Jolany, Hassan
    JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2019, 10 (02): : 21 - 34
  • [36] POLYLOGARITHMS AND POLY-BERNOULLI POLYNOMIALS
    Bayad, Abdelmejid
    Hamahata, Yoshinori
    KYUSHU JOURNAL OF MATHEMATICS, 2011, 65 (01) : 15 - 24
  • [37] Degenerate polyexponential functions and type 2 degenerate poly-Bernoulli numbers and polynomials
    Kim, Taekyun
    Kim, Dae San
    Kwon, Jongkyum
    Lee, Hyunseok
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [38] IDENTITIES INVOLVING THE DEGENERATE GENERALIZED (p, q)-POLY-BERNOULLI NUMBERS AND POLYNOMIALS
    Jung, N. S.
    JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2020, 38 (5-6): : 601 - 609
  • [39] Degenerate polyexponential functions and type 2 degenerate poly-Bernoulli numbers and polynomials
    Taekyun Kim
    Dae San Kim
    Jongkyum Kwon
    Hyunseok Lee
    Advances in Difference Equations, 2020
  • [40] Representations of degenerate poly-Bernoulli polynomials
    Taekyun Kim
    Dae San Kim
    Jongkyum Kwon
    Hyunseok Lee
    Journal of Inequalities and Applications, 2021