Probabilistic poly-Bernoulli numbers

被引:1
|
作者
Liu, Wencong [1 ,2 ]
Ma, Yuankui [2 ]
Kim, Taekyun [2 ,3 ]
Kim, Dae San [4 ]
机构
[1] Northwest Univ, Sch Math, Xian, Shaanxi, Peoples R China
[2] Xian Technol Univ, Sch Sci, Xian, Shaanxi, Peoples R China
[3] Kwangwoon Univ, Dept Math, Seoul 139701, South Korea
[4] Sogang Univ, Dept Math, Seoul, South Korea
关键词
Modified probabilistic Bernoulli polynomials associated with <italic>Y</italic>; proba-bilistic poly-Bernoulli numbers associated with <italic>Y</italic>; probabilistic numbers associated with <italic>Y</italic>; DEGENERATE BERNOULLI; STIRLING NUMBERS; POLYNOMIALS;
D O I
10.1080/13873954.2024.2427306
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Assume that is Y a random variable whose moment generating function exists in a neighbourhood of the origin. The aim of this paper is to study probabilistic poly-Bernoulli numbers associated with Y, as probabilistic extensions of poly-Bernoulli numbers. We derive explicit expressions, some related identities and a symmetric relation for those numbers. We also investigate explicit expressions for the modified probabilisitc Bernoulli numbers associated with Y, which are slightly different from probabilisitic Bernoulli numbers associated with Y. As special cases of Y, we treat the Poisson, gamma and Bernoulli random variables.
引用
收藏
页码:840 / 856
页数:17
相关论文
共 50 条
  • [21] Some applications of degenerate poly-Bernoulli numbers and polynomials
    Kim, Dae San
    Kim, Taekyun
    GEORGIAN MATHEMATICAL JOURNAL, 2019, 26 (03) : 415 - 421
  • [22] FULLY DEGENERATE HERMITE POLY-BERNOULLI NUMBERS AND POLYNOMIALS
    Khan, W. A.
    Nisar, K. S.
    Araci, S.
    Acikgoz, M.
    ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES, 2018, 17 (06): : 461 - 478
  • [23] Sums of Products of Poly-Bernoulli Numbers of Negative Index
    Kamano, Ken
    JOURNAL OF INTEGER SEQUENCES, 2012, 15 (01)
  • [24] A note on poly-Bernoulli numbers and polynomials of the second kind
    Taekyun Kim
    Hyuck In Kwon
    Sang Hun Lee
    Jong Jin Seo
    Advances in Difference Equations, 2014
  • [25] Generalized harmonic numbers via poly-Bernoulli polynomials
    Kargin, Levent
    Cenkci, Mehmet
    Dil, Ayhan
    Can, Mumun
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2022, 100 (3-4): : 365 - 386
  • [26] A note on poly-Bernoulli numbers and polynomials of the second kind
    Kim, Taekyun
    Kwon, Hyuck In
    Lee, Sang Hun
    Seo, Jong Jin
    ADVANCES IN DIFFERENCE EQUATIONS, 2014,
  • [27] Stirling numbers with level 2 and poly-Bernoulli numbers with level 2
    Komatsu, Takao
    PUBLICATIONES MATHEMATICAE DEBRECEN, 2022, 100 (1-2): : 241 - 261
  • [28] A note on poly-Bernoulli and higher-order poly-Bernoulli polynomials
    D. Kim
    T. Kim
    Russian Journal of Mathematical Physics, 2015, 22 : 26 - 33
  • [29] Combinatorial aspects of poly-Bernoulli polynomials and poly-Euler numbers
    Benyi, Beata
    Matsusaka, Toshiki
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2022, 34 (03): : 917 - 939
  • [30] A note on poly-Bernoulli and higher-order poly-Bernoulli polynomials
    Kim, D.
    Kim, T.
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2015, 22 (01) : 26 - 33