Combinatorial aspects of poly-Bernoulli polynomials and poly-Euler numbers

被引:1
|
作者
Benyi, Beata [1 ]
Matsusaka, Toshiki [2 ]
机构
[1] Univ Publ Serv, Fac Water Sci, Baja, Hungary
[2] Kyushu Univ Motooka, Fac Math, 744 Nishi Ku, Fukuoka 8190395, Japan
来源
关键词
SUMS;
D O I
10.5802/jtnb.1234
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we introduce combinatorial models for poly -Bernoulli polynomials and poly-Euler numbers of both kinds. As their applications, we provide combinatorial proofs of some identities involving poly-Bernoulli polynomials.
引用
收藏
页码:917 / 939
页数:24
相关论文
共 50 条
  • [1] A note on degenerate poly-Bernoulli numbers and polynomials
    Dae San Kim
    Taekyun Kim
    [J]. Advances in Difference Equations, 2015
  • [2] A note on degenerate poly-Bernoulli numbers and polynomials
    Kim, Dae San
    Kim, Taekyun
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2015,
  • [3] Poly-Bernoulli numbers and polynomials with a q parameter
    Cenkci, Mehmet
    Komatsu, Takao
    [J]. JOURNAL OF NUMBER THEORY, 2015, 152 : 38 - 54
  • [4] Fully degenerate poly-Bernoulli numbers and polynomials
    Kim, Taekyun
    Kim, Dae San
    Seo, Jong-Jin
    [J]. OPEN MATHEMATICS, 2016, 14 : 545 - 556
  • [5] ON POLY-EULER NUMBERS
    Ohno, Yasuo
    Sasaki, Yoshitaka
    [J]. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2017, 103 (01) : 126 - 144
  • [6] Some applications of degenerate poly-Bernoulli numbers and polynomials
    Kim, Dae San
    Kim, Taekyun
    [J]. GEORGIAN MATHEMATICAL JOURNAL, 2019, 26 (03) : 415 - 421
  • [7] FULLY DEGENERATE HERMITE POLY-BERNOULLI NUMBERS AND POLYNOMIALS
    Khan, W. A.
    Nisar, K. S.
    Araci, S.
    Acikgoz, M.
    [J]. ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES, 2018, 17 (06): : 461 - 478
  • [8] A note on poly-Bernoulli numbers and polynomials of the second kind
    Taekyun Kim
    Hyuck In Kwon
    Sang Hun Lee
    Jong Jin Seo
    [J]. Advances in Difference Equations, 2014
  • [9] A note on poly-Bernoulli numbers and polynomials of the second kind
    Kim, Taekyun
    Kwon, Hyuck In
    Lee, Sang Hun
    Seo, Jong Jin
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2014,
  • [10] Generalized harmonic numbers via poly-Bernoulli polynomials
    Kargin, Levent
    Cenkci, Mehmet
    Dil, Ayhan
    Can, Mumun
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 2022, 100 (3-4): : 365 - 386