Combinatorial aspects of poly-Bernoulli polynomials and poly-Euler numbers

被引:1
|
作者
Benyi, Beata [1 ]
Matsusaka, Toshiki [2 ]
机构
[1] Univ Publ Serv, Fac Water Sci, Baja, Hungary
[2] Kyushu Univ Motooka, Fac Math, 744 Nishi Ku, Fukuoka 8190395, Japan
来源
关键词
SUMS;
D O I
10.5802/jtnb.1234
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we introduce combinatorial models for poly -Bernoulli polynomials and poly-Euler numbers of both kinds. As their applications, we provide combinatorial proofs of some identities involving poly-Bernoulli polynomials.
引用
下载
收藏
页码:917 / 939
页数:24
相关论文
共 50 条
  • [31] Bijective enumerations for symmetrized poly-Bernoulli polynomials
    Hirose, Minoru
    Matsusaka, Toshiki
    Sekigawa, Ryutaro
    Yoshizaki, Hyuga
    ELECTRONIC JOURNAL OF COMBINATORICS, 2022, 29 (03):
  • [32] A RESEARCH ON THE GENERALIZED POLY-BERNOULLI POLYNOMIALS WITH VARIABLE a
    Jung, N. S.
    Ryoo, C. S.
    JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2018, 36 (5-6): : 475 - 489
  • [33] Probabilistic Type 2 Poly-Bernoulli Polynomials
    Lee, Si Hyeon
    Chen, Li
    Kim, Wonjoo
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2024, 17 (03): : 2336 - 2348
  • [34] Degenerate polyexponential functions and type 2 degenerate poly-Bernoulli numbers and polynomials
    Kim, Taekyun
    Kim, Dae San
    Kwon, Jongkyum
    Lee, Hyunseok
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [35] IDENTITIES INVOLVING THE DEGENERATE GENERALIZED (p, q)-POLY-BERNOULLI NUMBERS AND POLYNOMIALS
    Jung, N. S.
    JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2020, 38 (5-6): : 601 - 609
  • [36] Degenerate polyexponential functions and type 2 degenerate poly-Bernoulli numbers and polynomials
    Taekyun Kim
    Dae San Kim
    Jongkyum Kwon
    Hyunseok Lee
    Advances in Difference Equations, 2020
  • [37] Generalized incomplete poly-Bernoulli and poly-Cauchy numbers
    Komatsu, Takao
    PERIODICA MATHEMATICA HUNGARICA, 2017, 75 (01) : 96 - 113
  • [38] Generalized incomplete poly-Bernoulli and poly-Cauchy numbers
    Takao Komatsu
    Periodica Mathematica Hungarica, 2017, 75 : 96 - 113
  • [39] DEGENERATE POLY-BERNOULLI POLYNOMIALS OF THE SECOND KIND
    Dolgy, Dmitry V.
    Kim, Dae San
    Kim, Taekyun
    Mansour, Toufik
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2016, 21 (05) : 954 - 966
  • [40] A note on a closed formula for poly-Bernoulli numbers
    Sanchez-Peregrino, R
    AMERICAN MATHEMATICAL MONTHLY, 2002, 109 (08): : 755 - 756