POLYLOGARITHMS AND POLY-BERNOULLI POLYNOMIALS

被引:74
|
作者
Bayad, Abdelmejid [1 ]
Hamahata, Yoshinori [2 ]
机构
[1] Univ Evry Val dEssone, Dept Math, F-91025 Evry, France
[2] Univ Tokyo, Grad Sch Math Sci, Tokyo 1538914, Japan
基金
日本学术振兴会;
关键词
polylogarithms; zeta functions; poly-Bernoulli numbers; poly-Bernoulli polynomials; FORMULA;
D O I
10.2206/kyushujm.65.15
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we investigate special generalized Bernoulli polynomials that generalize classical Bernoulli polynomials and numbers. We call them poly-Bernoulli polynomials. We prove a collection of extremely important and fundamental identities satisfied by our poly-Bernoulli polynomials and numbers. These properties are of arithmetical nature.
引用
收藏
页码:15 / 24
页数:10
相关论文
共 50 条
  • [1] A note on poly-Bernoulli and higher-order poly-Bernoulli polynomials
    D. Kim
    T. Kim
    Russian Journal of Mathematical Physics, 2015, 22 : 26 - 33
  • [2] ON MULTI POLY-BERNOULLI POLYNOMIALS
    Corcino, Cristina B.
    Corcino, Roberto B.
    Komatsu, Takao
    Jolany, Hassan
    JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2019, 10 (02): : 21 - 34
  • [3] A note on poly-Bernoulli and higher-order poly-Bernoulli polynomials
    Kim, D.
    Kim, T.
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2015, 22 (01) : 26 - 33
  • [4] Representations of degenerate poly-Bernoulli polynomials
    Taekyun Kim
    Dae San Kim
    Jongkyum Kwon
    Hyunseok Lee
    Journal of Inequalities and Applications, 2021
  • [5] Representations of degenerate poly-Bernoulli polynomials
    Kim, Taekyun
    Kim, Dae San
    Kwon, Jongkyum
    Lee, Hyunseok
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2021, 2021 (01)
  • [6] A parametric kind of the poly-Bernoulli polynomials
    Ghayasuddin, Mohd
    Sharma, Sunil K.
    Khan, Waseem A.
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2020, 21 (04): : 309 - 321
  • [7] A Note on the Poly-Bernoulli Polynomials of the Second Kind
    Yun, Sang Jo
    Park, Jin-Woo
    JOURNAL OF FUNCTION SPACES, 2020, 2020
  • [8] Bijective enumerations for symmetrized poly-Bernoulli polynomials
    Hirose, Minoru
    Matsusaka, Toshiki
    Sekigawa, Ryutaro
    Yoshizaki, Hyuga
    ELECTRONIC JOURNAL OF COMBINATORICS, 2022, 29 (03):
  • [9] A note on degenerate poly-Bernoulli numbers and polynomials
    Dae San Kim
    Taekyun Kim
    Advances in Difference Equations, 2015
  • [10] Explicit formulae for sums of products of Bernoulli polynomials, including poly-Bernoulli polynomials
    Ken Kamano
    Takao Komatsu
    The Ramanujan Journal, 2014, 33 : 301 - 313