POLYLOGARITHMS AND POLY-BERNOULLI POLYNOMIALS

被引:74
|
作者
Bayad, Abdelmejid [1 ]
Hamahata, Yoshinori [2 ]
机构
[1] Univ Evry Val dEssone, Dept Math, F-91025 Evry, France
[2] Univ Tokyo, Grad Sch Math Sci, Tokyo 1538914, Japan
基金
日本学术振兴会;
关键词
polylogarithms; zeta functions; poly-Bernoulli numbers; poly-Bernoulli polynomials; FORMULA;
D O I
10.2206/kyushujm.65.15
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we investigate special generalized Bernoulli polynomials that generalize classical Bernoulli polynomials and numbers. We call them poly-Bernoulli polynomials. We prove a collection of extremely important and fundamental identities satisfied by our poly-Bernoulli polynomials and numbers. These properties are of arithmetical nature.
引用
收藏
页码:15 / 24
页数:10
相关论文
共 50 条
  • [31] Study of degenerate poly-bernoulli polynomials by λ-umbral calculus
    Jang, Lee-Chae
    Kim, Dae San
    Kim, Hanyoung
    Kim, Taekyun
    Lee, Hyunseok
    CMES - Computer Modeling in Engineering and Sciences, 2021, 129 (01): : 393 - 408
  • [32] Hermite and poly-Bernoulli mixed-type polynomials
    Kim, Dae San
    Kim, Taekyun
    ADVANCES IN DIFFERENCE EQUATIONS, 2013,
  • [33] A NEW CLASS OF GENERALIZED POLYNOMIALS ASSOCIATED WITH HERMITE AND POLY-BERNOULLI POLYNOMIALS
    Pathan, M. A.
    Khan, Waseem A.
    MISKOLC MATHEMATICAL NOTES, 2021, 22 (01) : 317 - 330
  • [34] Generalized incomplete poly-Bernoulli polynomials and generalized incomplete poly-Cauchy polynomials
    Komatsu, Takao
    Luca, Florian
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2017, 13 (02) : 371 - 391
  • [35] On Two Bivariate Kinds of Poly-Bernoulli and Poly-Genocchi Polynomials
    Ryoo, Cheon Seoung
    Khan, Waseem A.
    MATHEMATICS, 2020, 8 (03)
  • [36] Combinatorial aspects of poly-Bernoulli polynomials and poly-Euler numbers
    Benyi, Beata
    Matsusaka, Toshiki
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2022, 34 (03): : 917 - 939
  • [37] Degenerate poly-Bernoulli polynomials arising from degenerate polylogarithm
    Kim, Taekyun
    Kim, Dansan
    Kim, Han-Young
    Lee, Hyunseok
    Jang, Lee-Chae
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [38] THE ARAKAWA-KANEKO ZETA FUNCTION AND POLY-BERNOULLI POLYNOMIALS
    Hamahata, Yoshinori
    GLASNIK MATEMATICKI, 2013, 48 (02) : 249 - 263
  • [39] A STUDY OF POLY-BERNOULLI POLYNOMIALS ASSOCIATED WITH HERMITE POLYNOMIALS WITH q-PARAMETER
    Khan, Waseem A.
    Srivastava, Divesh
    HONAM MATHEMATICAL JOURNAL, 2019, 41 (04): : 781 - 798
  • [40] On the type 2 poly-Bernoulli polynomials associated with umbral calculus
    Kim, Taekyun
    San Kim, Dae
    Dolgy, Dmitry, V
    Park, Jin-Woo
    OPEN MATHEMATICS, 2021, 19 (01): : 878 - 887