POLYLOGARITHMS AND POLY-BERNOULLI POLYNOMIALS

被引:74
|
作者
Bayad, Abdelmejid [1 ]
Hamahata, Yoshinori [2 ]
机构
[1] Univ Evry Val dEssone, Dept Math, F-91025 Evry, France
[2] Univ Tokyo, Grad Sch Math Sci, Tokyo 1538914, Japan
基金
日本学术振兴会;
关键词
polylogarithms; zeta functions; poly-Bernoulli numbers; poly-Bernoulli polynomials; FORMULA;
D O I
10.2206/kyushujm.65.15
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we investigate special generalized Bernoulli polynomials that generalize classical Bernoulli polynomials and numbers. We call them poly-Bernoulli polynomials. We prove a collection of extremely important and fundamental identities satisfied by our poly-Bernoulli polynomials and numbers. These properties are of arithmetical nature.
引用
收藏
页码:15 / 24
页数:10
相关论文
共 50 条
  • [21] Hermite and poly-Bernoulli mixed-type polynomials
    Dae San Kim
    Taekyun Kim
    Advances in Difference Equations, 2013
  • [22] Barnes' multiple Bernoulli and poly-Bernoulli mixed-type polynomials
    Dolgy, Dmitry V.
    Kim, Dae San
    Kim, Taekyun
    Komatsu, Takao
    Lee, Sang-Hun
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2015, 18 (05) : 933 - 951
  • [23] Study of Degenerate Poly-Bernoulli Polynomials by λ-Umbral Calculus
    Jang, Lee-Chae
    San Kim, Dae
    Kim, Hanyoung
    Kim, Taekyun
    Lee, Hyunseok
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2021, 129 (01): : 393 - 408
  • [24] Some applications of degenerate poly-Bernoulli numbers and polynomials
    Kim, Dae San
    Kim, Taekyun
    GEORGIAN MATHEMATICAL JOURNAL, 2019, 26 (03) : 415 - 421
  • [25] FULLY DEGENERATE HERMITE POLY-BERNOULLI NUMBERS AND POLYNOMIALS
    Khan, W. A.
    Nisar, K. S.
    Araci, S.
    Acikgoz, M.
    ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES, 2018, 17 (06): : 461 - 478
  • [26] Higher-order Bernoulli and poly-Bernoulli mixed type polynomials
    Kim, Dae San
    Kim, Taekyun
    GEORGIAN MATHEMATICAL JOURNAL, 2015, 22 (02) : 265 - 272
  • [27] A note on poly-Bernoulli numbers and polynomials of the second kind
    Taekyun Kim
    Hyuck In Kwon
    Sang Hun Lee
    Jong Jin Seo
    Advances in Difference Equations, 2014
  • [28] A note on poly-Bernoulli numbers and polynomials of the second kind
    Kim, Taekyun
    Kwon, Hyuck In
    Lee, Sang Hun
    Seo, Jong Jin
    ADVANCES IN DIFFERENCE EQUATIONS, 2014,
  • [29] Generalized harmonic numbers via poly-Bernoulli polynomials
    Kargin, Levent
    Cenkci, Mehmet
    Dil, Ayhan
    Can, Mumun
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2022, 100 (3-4): : 365 - 386
  • [30] Degenerate poly-Bernoulli polynomials with umbral calculus viewpoint
    Kim, Dae San
    Kim, Taekyun
    Kwon, Hyuck In
    Mansour, Toufik
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,