Fermionic Novikov bialgebras, fermionic Novikov Yang-Baxter equations and Rota-Baxter operators

被引:0
|
作者
Lu, Dilei [1 ,2 ]
机构
[1] Nankai Univ, Chern Inst Math, Tianjin 300071, Peoples R China
[2] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
关键词
Fermionic Novikov bialgebras; Pre-Lie algebras; Rota-Baxter operators; Yang-Baxter equations; HAMILTONIAN OPERATORS; ALGEBRAS;
D O I
10.1080/00927872.2025.2473680
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Fermionic Novikov algebras are a special class of pre-Lie algebras with anti-commutative right multiplication operators. They correspond to a certain Hamiltonian superoperator in a supervariable. In this paper, we establish a bialgebra theory for fermionic Novikov algebras via the Manin triples approach. Explicitly, we introduce the notion of a fermionic Novikov bialgebra which is equivalent to a Manin triple of fermionic Novikov algebras as well as a certain matched pair of fermionic Novikov algebras. Moreover, we construct a special fermionic Novikov bialgebra, called quasi-triangular, from a solution of the fermionic Novikov Yang-Baxter equation (FNYBE) whose antisymmetric part is invariant. In particular, a symmetric solution of the FNYBE in a fermionic Novikov algebra provide a triangular fermionic Novikov bialgebra, whereas in turn the notion of pre-fermionic Novikov algebras are also introduced to produce the former. As another subclasses of quasi-triangular fermionic Novikov bialgebras, factorizable fermionic Novikov bialgebras lead to a factorization of the underlying fermionic Novikov algebras. Finally, we show that a quadratic Rota-Baxter fermionic Novikov algebra of weight 0 gives rise to a triangular fermionic Novikov bialgebra. Futhermore, there is a one-to-one correspondence between quadratic Rota-Baxter fermionic Novikov algebras of nonzero weights and factorizable fermionic Novikov bialgebras.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] Leibniz bialgebras, relative Rota-Baxter operators, and the classical Leibniz Yang-Baxter equation
    Tang, Rong
    Sheng, Yunhe
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2022, 16 (04) : 1179 - 1211
  • [2] Rota-Baxter Lie bialgebras, classical Yang-Baxter equations and special L-dendriform bialgebras
    Bai, Chengming
    Guo, Li
    Liu, Guilai
    Ma, Tianshui
    ALGEBRAS AND REPRESENTATION THEORY, 2024, 27 (02) : 1347 - 1372
  • [3] Rota-Baxter Lie bialgebras, classical Yang-Baxter equations and special L-dendriform bialgebras
    Chengming Bai
    Li Guo
    Guilai Liu
    Tianshui Ma
    Algebras and Representation Theory, 2024, 27 : 1347 - 1372
  • [4] Rota-Baxter operators on Clifford semigroups and the Yang-Baxter equation
    Catino, Francesco
    Mazzotta, Marzia
    Stefanelli, Paola
    JOURNAL OF ALGEBRA, 2023, 622 : 587 - 613
  • [5] Rota-Baxter coalgebras and Rota-Baxter bialgebras
    Ma, Tianshui
    Liu, Linlin
    LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (05): : 968 - 979
  • [6] Rota-Baxter operators on sl(2, C) and solutions of the classical Yang-Baxter equation
    Pei, Jun
    Bai, Chengming
    Guo, Li
    JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (02)
  • [7] Yang-Baxter Equations and Relative Rota-Baxter Operators for Left-Alia Algebras Associated to Invariant Theory
    Kang, Chuangchuang
    Liu, Guilai
    Yu, Shizhuo
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2024, 31 (01)
  • [8] Post-Hopf algebras, relative Rota-Baxter operators and solutions to the Yang-Baxter equation
    Li, Yunnan
    Sheng, Yunhe
    Tang, Rong
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2024, 18 (01) : 605 - 630
  • [9] Rota-Baxter groups, skew left braces, and the Yang-Baxter equation
    Bardakov, Valeriy G.
    Gubarev, Vsevolod
    JOURNAL OF ALGEBRA, 2022, 596 : 328 - 351
  • [10] Factorizable Lie Bialgebras, Quadratic Rota-Baxter Lie Algebras and Rota-Baxter Lie Bialgebras
    Lang, Honglei
    Sheng, Yunhe
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 397 (02) : 763 - 791