Rota-Baxter Lie bialgebras, classical Yang-Baxter equations and special L-dendriform bialgebras

被引:2
|
作者
Bai, Chengming [1 ,2 ]
Guo, Li [3 ]
Liu, Guilai [1 ,2 ]
Ma, Tianshui [4 ]
机构
[1] Nankai Univ, Chern Inst Math, Tianjin 300071, Peoples R China
[2] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
[3] Rutgers State Univ, Dept Math & Comp Sci, Newark, NJ 07102 USA
[4] Henan Normal Univ, Sch Math & Informat Sci, Xinxiang 453007, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Rota-Baxter operator; Classical Yang-Baxter equation; Pre-Lie algebra; Bialgebra; Special L-dendriform algebra;
D O I
10.1007/s10468-024-10261-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper extends the well-known fact that a Rota-Baxter operator of weight 0 on a Lie algebra induces a pre-Lie algebra, to the level of bialgebras. We first show that a nondegenerate symmetric bilinear form that is invariant on a Rota-Baxter Lie algebra of weight 0 gives such a form that is left-invariant on the induced pre-Lie algebra and thereby gives a special L-dendriform algebra. This fact is obtained as a special case of Rota-Baxter Lie algebras with an adjoint-admissible condition, for a representation of the Lie algebra to admit a representation of the Rota-Baxter Lie algebra on the dual space. This condition can also be naturally formulated for Manin triples of Rota-Baxter Lie algebras, which can in turn be characterized in terms of bialgebras, thereby extending the Manin triple approach to Lie bialgebras. In the case of weight 0, the resulting Rota-Baxter Lie bialgebras give rise to special L-dendriform bialgebras, lifting the aforementioned connection that a Rota-Baxter Lie algebra induces a pre-Lie algebra to the level of bialgebras. The relationship between these two classes of bialgebras is also studied in terms of the coboundary cases, classical Yang-Baxter equations and O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}$$\end{document}-operators.
引用
收藏
页码:1347 / 1372
页数:26
相关论文
共 50 条
  • [1] Rota-Baxter Lie bialgebras, classical Yang-Baxter equations and special L-dendriform bialgebras
    Chengming Bai
    Li Guo
    Guilai Liu
    Tianshui Ma
    Algebras and Representation Theory, 2024, 27 : 1347 - 1372
  • [2] Factorizable Lie Bialgebras, Quadratic Rota-Baxter Lie Algebras and Rota-Baxter Lie Bialgebras
    Lang, Honglei
    Sheng, Yunhe
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 397 (02) : 763 - 791
  • [3] Leibniz bialgebras, relative Rota-Baxter operators, and the classical Leibniz Yang-Baxter equation
    Tang, Rong
    Sheng, Yunhe
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2022, 16 (04) : 1179 - 1211
  • [4] Fermionic Novikov bialgebras, fermionic Novikov Yang-Baxter equations and Rota-Baxter operators
    Lu, Dilei
    COMMUNICATIONS IN ALGEBRA, 2025,
  • [5] Rota-Baxter coalgebras and Rota-Baxter bialgebras
    Ma, Tianshui
    Liu, Linlin
    LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (05): : 968 - 979
  • [6] Rota-Baxter systems, dendriform algebras and covariant bialgebras
    Brzezinski, Tomasz
    JOURNAL OF ALGEBRA, 2016, 460 : 1 - 25
  • [7] Factorizable Lie Bialgebras, Quadratic Rota–Baxter Lie Algebras and Rota–Baxter Lie Bialgebras
    Honglei Lang
    Yunhe Sheng
    Communications in Mathematical Physics, 2023, 397 : 763 - 791
  • [8] Dendriform-Nijenhuis bialgebras and DN-associative Yang-Baxter equations
    Peng, Xiao-Song
    Zhang, Yi
    Gao, Xing
    Luo, Yan-Feng
    JOURNAL OF ALGEBRA, 2021, 575 : 78 - 126
  • [9] Leibniz Bialgebras, Classical Yang-Baxter Equations and Dynamical Systems
    Rezaei-Aghdam, Adel
    Sedghi-Ghadim, Leila
    Haghighatdoost, Ghorbanali
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2021, 31 (05)
  • [10] Classical Yang-Baxter equation and low dimensional triangular Lie bialgebras
    Zhang, SC
    PHYSICS LETTERS A, 1998, 246 (1-2) : 71 - 81