Rota-Baxter Lie bialgebras, classical Yang-Baxter equations and special L-dendriform bialgebras

被引:2
|
作者
Bai, Chengming [1 ,2 ]
Guo, Li [3 ]
Liu, Guilai [1 ,2 ]
Ma, Tianshui [4 ]
机构
[1] Nankai Univ, Chern Inst Math, Tianjin 300071, Peoples R China
[2] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
[3] Rutgers State Univ, Dept Math & Comp Sci, Newark, NJ 07102 USA
[4] Henan Normal Univ, Sch Math & Informat Sci, Xinxiang 453007, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Rota-Baxter operator; Classical Yang-Baxter equation; Pre-Lie algebra; Bialgebra; Special L-dendriform algebra;
D O I
10.1007/s10468-024-10261-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper extends the well-known fact that a Rota-Baxter operator of weight 0 on a Lie algebra induces a pre-Lie algebra, to the level of bialgebras. We first show that a nondegenerate symmetric bilinear form that is invariant on a Rota-Baxter Lie algebra of weight 0 gives such a form that is left-invariant on the induced pre-Lie algebra and thereby gives a special L-dendriform algebra. This fact is obtained as a special case of Rota-Baxter Lie algebras with an adjoint-admissible condition, for a representation of the Lie algebra to admit a representation of the Rota-Baxter Lie algebra on the dual space. This condition can also be naturally formulated for Manin triples of Rota-Baxter Lie algebras, which can in turn be characterized in terms of bialgebras, thereby extending the Manin triple approach to Lie bialgebras. In the case of weight 0, the resulting Rota-Baxter Lie bialgebras give rise to special L-dendriform bialgebras, lifting the aforementioned connection that a Rota-Baxter Lie algebra induces a pre-Lie algebra to the level of bialgebras. The relationship between these two classes of bialgebras is also studied in terms of the coboundary cases, classical Yang-Baxter equations and O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}$$\end{document}-operators.
引用
收藏
页码:1347 / 1372
页数:26
相关论文
共 50 条
  • [31] THE CLASSICAL HOM-YANG-BAXTER EQUATION AND HOM-LIE BIALGEBRAS
    Yau, Donald
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2015, 17 : 11 - 45
  • [32] Pseudo-Hessian Lie algebras and L-dendriform bialgebras
    Ni, Xiang
    Bai, Chengming
    JOURNAL OF ALGEBRA, 2014, 400 : 273 - 289
  • [33] Long bialgebras, dimodule algebras and quantum Yang-Baxter modules over Long bialgebras
    Zhang, Liang Yun
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2006, 22 (04) : 1261 - 1270
  • [34] Algebraic Geometry of Lie Bialgebras Defined by Solutions of the Classical Yang–Baxter Equation
    Raschid Abedin
    Igor Burban
    Communications in Mathematical Physics, 2021, 387 : 1051 - 1109
  • [35] 3-Hom-Lie Yang-Baxter Equation and 3-Hom-Lie Bialgebras
    Guo, Shuangjian
    Wang, Shengxiang
    Zhang, Xiaohui
    MATHEMATICS, 2022, 10 (14)
  • [36] The Classical Hom-Leibniz Yang-Baxter Equation and Hom-Leibniz Bialgebras
    Guo, Shuangjian
    Wang, Shengxiang
    Zhang, Xiaohui
    MATHEMATICS, 2022, 10 (11)
  • [37] QUASITRIANGULAR COVARIANT MONOIDAL BIHOM-BIALGEBRAS, ASSOCIATIVE MONOIDAL BIHOM-YANG-BAXTER EQUATIONS AND ROTA-BAXTER PAIRED MONOIDAL BIHOM-MODULES
    Ma, Tianshui
    Yang, Haiyan
    Zhang, Liangyun
    Zheng, Huihui
    COLLOQUIUM MATHEMATICUM, 2020, 161 (02) : 189 - 221
  • [38] HOMOTOPY RELATIVE ROTA-BAXTER LIE ALGEBRAS, TRIANGULAR Loa-BIALGEBRAS AND HIGHER DERIVED BRACKETS
    Lazarev, Andrey
    Sheng, Yunhe
    Tang, Rong
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 376 (04) : 2921 - 2945
  • [39] Quasi-triangular, factorizable Leibniz bialgebras and relative Rota-Baxter operators
    Bai, Chengming
    Liu, Guilai
    Sheng, Yunhe
    Tang, Rong
    FORUM MATHEMATICUM, 2024,
  • [40] Double product integrals and enriquez quantisation of Lie bialgebras II:: The quantum Yang-Baxter equation
    Hudson, RL
    Pulmannová, S
    LETTERS IN MATHEMATICAL PHYSICS, 2005, 72 (03) : 211 - 224