Fermionic Novikov bialgebras, fermionic Novikov Yang-Baxter equations and Rota-Baxter operators

被引:0
|
作者
Lu, Dilei [1 ,2 ]
机构
[1] Nankai Univ, Chern Inst Math, Tianjin 300071, Peoples R China
[2] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
关键词
Fermionic Novikov bialgebras; Pre-Lie algebras; Rota-Baxter operators; Yang-Baxter equations; HAMILTONIAN OPERATORS; ALGEBRAS;
D O I
10.1080/00927872.2025.2473680
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Fermionic Novikov algebras are a special class of pre-Lie algebras with anti-commutative right multiplication operators. They correspond to a certain Hamiltonian superoperator in a supervariable. In this paper, we establish a bialgebra theory for fermionic Novikov algebras via the Manin triples approach. Explicitly, we introduce the notion of a fermionic Novikov bialgebra which is equivalent to a Manin triple of fermionic Novikov algebras as well as a certain matched pair of fermionic Novikov algebras. Moreover, we construct a special fermionic Novikov bialgebra, called quasi-triangular, from a solution of the fermionic Novikov Yang-Baxter equation (FNYBE) whose antisymmetric part is invariant. In particular, a symmetric solution of the FNYBE in a fermionic Novikov algebra provide a triangular fermionic Novikov bialgebra, whereas in turn the notion of pre-fermionic Novikov algebras are also introduced to produce the former. As another subclasses of quasi-triangular fermionic Novikov bialgebras, factorizable fermionic Novikov bialgebras lead to a factorization of the underlying fermionic Novikov algebras. Finally, we show that a quadratic Rota-Baxter fermionic Novikov algebra of weight 0 gives rise to a triangular fermionic Novikov bialgebra. Futhermore, there is a one-to-one correspondence between quadratic Rota-Baxter fermionic Novikov algebras of nonzero weights and factorizable fermionic Novikov bialgebras.
引用
收藏
页数:27
相关论文
共 50 条
  • [31] ON CONNECTION BETWEEN ROTA-BAXTER OPERATORS AND SOLUTIONS OF THE CLASSICAL YANG-BAXTER EQUATION WITH AN AD-INVARIANT SYMMETRIC PART ON GENERAL LINEAR ALGEBRA
    Goncharov, M. E.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2024, 21 (01): : 81 - 97
  • [32] Cohomology and deformations of weighted Rota-Baxter operators
    Das, Apurba
    JOURNAL OF MATHEMATICAL PHYSICS, 2022, 63 (09)
  • [33] Rota-Baxter operators on Witt and Virasoro algebras
    Gao, Xu
    Liu, Ming
    Bai, Chengming
    Jing, Naihuan
    JOURNAL OF GEOMETRY AND PHYSICS, 2016, 108 : 1 - 20
  • [34] Extended Rota-Baxter Operators on Leibniz Algebras
    Li, Yizheng
    Wang, Dingguo
    FRONTIERS OF MATHEMATICS, 2025,
  • [35] Splitting of Operads and Rota-Baxter Operators on Operads
    Pei, Jun
    Bai, Chengming
    Guo, Li
    APPLIED CATEGORICAL STRUCTURES, 2017, 25 (04) : 505 - 538
  • [36] Twisted algebras and Rota-Baxter type operators
    Panaite, Florin
    Van Oystaeyen, Freddy
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2017, 16 (04)
  • [37] RELATIVE ROTA-BAXTER OPERATORS AND TRIDENDRIFORM ALGEBRAS
    Bai, Chengming
    Guo, Li
    Ni, Xiang
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2013, 12 (07)
  • [38] Rota-Baxter operators on involutive associative algebras
    Das, Apurba
    ACTA SCIENTIARUM MATHEMATICARUM, 2021, 87 (3-4): : 349 - 366
  • [39] Rota-Baxter operators on cocommutative Hopf algebras
    Goncharov, Maxim
    JOURNAL OF ALGEBRA, 2021, 582 : 39 - 56
  • [40] On a Class of Rota-Baxter Operators with Geometric Origin
    Anghel, Cristian
    10TH JUBILEE CONFERENCE OF THE BALKAN PHYSICAL UNION, 2019, 2075