Fermionic Novikov bialgebras, fermionic Novikov Yang-Baxter equations and Rota-Baxter operators

被引:0
|
作者
Lu, Dilei [1 ,2 ]
机构
[1] Nankai Univ, Chern Inst Math, Tianjin 300071, Peoples R China
[2] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
关键词
Fermionic Novikov bialgebras; Pre-Lie algebras; Rota-Baxter operators; Yang-Baxter equations; HAMILTONIAN OPERATORS; ALGEBRAS;
D O I
10.1080/00927872.2025.2473680
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Fermionic Novikov algebras are a special class of pre-Lie algebras with anti-commutative right multiplication operators. They correspond to a certain Hamiltonian superoperator in a supervariable. In this paper, we establish a bialgebra theory for fermionic Novikov algebras via the Manin triples approach. Explicitly, we introduce the notion of a fermionic Novikov bialgebra which is equivalent to a Manin triple of fermionic Novikov algebras as well as a certain matched pair of fermionic Novikov algebras. Moreover, we construct a special fermionic Novikov bialgebra, called quasi-triangular, from a solution of the fermionic Novikov Yang-Baxter equation (FNYBE) whose antisymmetric part is invariant. In particular, a symmetric solution of the FNYBE in a fermionic Novikov algebra provide a triangular fermionic Novikov bialgebra, whereas in turn the notion of pre-fermionic Novikov algebras are also introduced to produce the former. As another subclasses of quasi-triangular fermionic Novikov bialgebras, factorizable fermionic Novikov bialgebras lead to a factorization of the underlying fermionic Novikov algebras. Finally, we show that a quadratic Rota-Baxter fermionic Novikov algebra of weight 0 gives rise to a triangular fermionic Novikov bialgebra. Futhermore, there is a one-to-one correspondence between quadratic Rota-Baxter fermionic Novikov algebras of nonzero weights and factorizable fermionic Novikov bialgebras.
引用
收藏
页数:27
相关论文
共 50 条
  • [21] Quasi-triangular, factorizable Leibniz bialgebras and relative Rota-Baxter operators
    Bai, Chengming
    Liu, Guilai
    Sheng, Yunhe
    Tang, Rong
    FORUM MATHEMATICUM, 2024,
  • [22] On rings of differential Rota-Baxter operators
    Gao, Xing
    Guo, Li
    Rosenkranz, Markus
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2018, 28 (01) : 1 - 36
  • [23] Deformations of associative Rota-Baxter operators
    Das, Apurba
    JOURNAL OF ALGEBRA, 2020, 560 : 144 - 180
  • [24] Leibniz Bialgebras, Classical Yang-Baxter Equations and Dynamical Systems
    Rezaei-Aghdam, Adel
    Sedghi-Ghadim, Leila
    Haghighatdoost, Ghorbanali
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2021, 31 (05)
  • [25] Rota-Baxter Operators on Skew Braces
    Wang, Ximu
    Zhang, Chongxia
    Zhang, Liangyun
    MATHEMATICS, 2024, 12 (11)
  • [26] ROTA-BAXTER OPERATORS ON UNITAL ALGEBRAS
    Gubarev, V
    MOSCOW MATHEMATICAL JOURNAL, 2021, 21 (02) : 325 - 364
  • [27] Rota-Baxter Operators on Quadratic Algebras
    Benito, Pilar
    Gubarev, Vsevolod
    Pozhidaev, Alexander
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2018, 15 (05)
  • [28] Braided Yang-Baxter operators
    Lu, DM
    COMMUNICATIONS IN ALGEBRA, 1999, 27 (05) : 2503 - 2509
  • [29] Splitting of Operads and Rota-Baxter Operators on Operads
    Jun Pei
    Chengming Bai
    Li Guo
    Applied Categorical Structures, 2017, 25 : 505 - 538
  • [30] Rota-Baxter mock-Lie bialgebras and related structures
    Laraiedh, Ismail
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2024, 21 (05)